1 Star 0 Fork 0

Xgalois/alpha_sigma

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
utils.py 5.71 KB
一键复制 编辑 原始数据 按行查看 历史
import numpy as np
import pickle
import torch
import torch.utils.data as torch_data
import time
import copy
import random
num2char = {0: "a", 1: "b", 2: "c", 3: "d", 4: "e", 5: "f", 6: "g", 7: "h", 8: "i", 9: "j", 10: "k", 11: "l", 12: "m",
13: "n", 14: "o", 15: "p", 16: "q", 17: "r", 18: "s", 19: "t", 20: "u"}
char2num = {"a": 0, "b": 1, "c": 2, "d": 3, "e": 4, "f": 5, "g": 6, "h": 7, "i": 8, "j": 9, "k": 10, "l": 11, "m": 12,
"n": 13, "o": 14, "p": 15, "q": 16, "r": 17, "s": 18, "t": 19, "u": 20}
temperature = 1
Cpuct = 0.1
batch_size = 20
board_size = 8
learning_rate = 0.1
class distribution_calculater:
def __init__(self, size):
self.map = {}
self.order = []
for i in range(size):
for j in range(size):
name = num2char[i]+num2char[j]
self.order.append(name)
self.map[name] = 0
def push(self, key, value):
self.map[key] = value
def get(self, train=True):
result = []
choice_pool = []
choice_prob = []
for key in self.order:
if self.map[key] != 0:
choice_pool.append(key)
tmp = np.float_power(self.map[key], 1 / temperature)
choice_prob.append(tmp)
result.append(tmp)
self.map[key] = 0
else:
result.append(0)
he = sum(result)
for i in range(len(result)):
if result[i]:
result[i] = result[i] / he
choice_prob = [choice/he for choice in choice_prob]
if train:
move = np.random.choice(choice_pool, p=0.8 * np.array(choice_prob) + 0.2 * np.random.dirichlet(0.3*np.ones(len(choice_prob))))
else:
move = choice_pool[np.argmax(choice_prob)]
return move, result
def step_child_remove(board_pool, child_pool):
i = 0
while i<len(board_pool) and len(child_pool) != 0:
j = 0
while j<len(child_pool):
if np.array_equal(board_pool[i], child_pool[j]):
board_pool.pop(i)
child_pool.pop(j)
i -= 1
break
else:
j += 1
i+=1
return board_pool
def write_file(object, file_name):
filewriter = open(file_name, 'wb')
pickle.dump(object, filewriter)
filewriter.close()
def read_file(file_name):
filereader = open(file_name, 'rb')
object = pickle.load(filereader)
filereader.close()
return object
def move_to_str(action):
return num2char[action[0]] + num2char[action[1]]
def str_to_move(str):
return np.array([char2num[str[0]], char2num[str[1]]])
def valid_move(state):
return list(np.argwhere(state==0))
def generate_new_state(old_name, step, current_player):
if current_player == 1:
step = "B" + num2char[step[0]] + num2char[step[1]]
else:
step = "W" + num2char[step[0]] + num2char[step[1]]
for i in range(0, len(old_name), 3):
if old_name[i+1]>step[1] or (old_name[i+1]==step[1] and old_name[i+2]>step[2]):
new_name = old_name[:i] + step + old_name[i:]
return new_name
new_name = old_name + step
return new_name
class random_stack:
def __init__(self, length=1000):
self.state = []
self.distrib = []
self.winner = []
self.length = length
def isEmpty(self):
return len(self.state) == 0
def push(self, item):
self.state.append(item["state"])
self.distrib.append(item["distribution"])
self.winner.append(item["value"])
if len(self.state)>= self.length:
self.state = self.state[1:]
self.distrib = self.distrib[1:]
self.winner = self.winner[1:]
def seq(self):
return self.state, self.distrib, self.winner
# def random_seq(self):
# tmp = copy.deepcopy(self.data)
# random.shuffle(tmp)
# return tmp
def generate_training_data(game_record, board_size):
board = np.zeros([board_size, board_size])
data = []
player = 1
winner = -1 if len(game_record) % 2 == 0 else 1
for i in range(len(game_record)):
step = str_to_move(game_record[i]['action'])
state = transfer_to_input(board, player, board_size)
data.append({"state": state, "distribution": game_record[i]['distribution'], "value": winner})
board[step[0], step[1]] = player
player, winner = -player, -winner
return data
def generate_data_loader(stack):
state, distrib, winner = stack.seq()
tensor_x = torch.stack(tuple([torch.from_numpy(s) for s in state]))
tensor_y1 = torch.stack(tuple([torch.Tensor(y1) for y1 in distrib]))
tensor_y2 = torch.stack(tuple([torch.Tensor([float(y2)]) for y2 in winner]))
dataset = torch_data.TensorDataset(tensor_x, tensor_y1, tensor_y2)
my_loader = torch_data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
return my_loader
def transfer_to_input(state, current_player, board_size):
if current_player==1:
tmp3 = np.ones([board_size, board_size]).astype(float)
tmp2 = np.array(state > 0).astype(float)
tmp1 = np.array(state < 0).astype(float)
else:
tmp3 = np.zeros([board_size, board_size])
tmp2 = np.array(state < 0).astype(float)
tmp1 = np.array(state > 0).astype(float)
return np.stack([tmp1, tmp2, tmp3])
def visualization(file_name, board_size=11):
action_record = []
record = read_file(file_name)
for i in record:
action_record.append(i["action"])
board = np.zeros([board_size, board_size])
stone = 1
for action in action_record:
act = str_to_move(action)
board[act[0], act[1]] = stone
stone = - stone
print(board, end="\r")
time.sleep(2)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/Xgalois/alpha_sigma.git
[email protected]:Xgalois/alpha_sigma.git
Xgalois
alpha_sigma
alpha_sigma
master

搜索帮助