代码拉取完成,页面将自动刷新
"""
@author: Viet Nguyen <[email protected]>
"""
import os
os.environ['OMP_NUM_THREADS'] = '1'
import argparse
import torch
from src.env import create_train_env
from src.model import PPO
from gym_super_mario_bros.actions import SIMPLE_MOVEMENT, COMPLEX_MOVEMENT, RIGHT_ONLY
import torch.nn.functional as F
def get_args():
parser = argparse.ArgumentParser(
"""Implementation of model described in the paper: Proximal Policy Optimization Algorithms for Contra Nes""")
parser.add_argument("--world", type=int, default=1)
parser.add_argument("--stage", type=int, default=1)
parser.add_argument("--action_type", type=str, default="simple")
parser.add_argument("--saved_path", type=str, default="trained_models")
parser.add_argument("--output_path", type=str, default="output")
args = parser.parse_args()
return args
def test(opt):
if torch.cuda.is_available():
torch.cuda.manual_seed(123)
else:
torch.manual_seed(123)
if opt.action_type == "right":
actions = RIGHT_ONLY
elif opt.action_type == "simple":
actions = SIMPLE_MOVEMENT
else:
actions = COMPLEX_MOVEMENT
env = create_train_env(opt.world, opt.stage, actions,
"{}/video_{}_{}.mp4".format(opt.output_path, opt.world, opt.stage))
model = PPO(env.observation_space.shape[0], len(actions))
if torch.cuda.is_available():
model.load_state_dict(torch.load("{}/ppo_super_mario_bros_{}_{}".format(opt.saved_path, opt.world, opt.stage)))
model.cuda()
else:
model.load_state_dict(torch.load("{}/ppo_super_mario_bros_{}_{}".format(opt.saved_path, opt.world, opt.stage),
map_location=lambda storage, loc: storage))
model.eval()
state = torch.from_numpy(env.reset())
while True:
if torch.cuda.is_available():
state = state.cuda()
logits, value = model(state)
policy = F.softmax(logits, dim=1)
action = torch.argmax(policy).item()
state, reward, done, info = env.step(action)
state = torch.from_numpy(state)
env.render()
if info["flag_get"]:
print("World {} stage {} completed".format(opt.world, opt.stage))
break
if __name__ == "__main__":
opt = get_args()
test(opt)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。