代码拉取完成,页面将自动刷新
同步操作将从 肆十二/pytorch-yolov5-car 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
from PyQt5.QtGui import *
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
import threading
import sys
import torch.backends.cudnn as cudnn
from models.experimental import *
from utils.datasets_notprint import *
from utils.utils import *
# 窗口主类
class MainWindow(QTabWidget):
# 基本配置不动,然后只动第三个界面
def __init__(self):
# 初始化设置
super().__init__()
self.setWindowTitle('红外车辆检测系统')
self.resize(1100, 700)
self.setWindowIcon(QIcon("UI_images/logo.png"))
# 图像检索
self.input_fname = "UI_images/about2.jpg"
# 视频读取相关设置
self.source = 'images/cam2.mkv'
self.single_source = ""
self.stopEvent = threading.Event()
self.stopEvent.clear()
self.isCamera = True
self.initUI()
self.set_down()
def initUI(self):
# 主布局
main_widget = QWidget()
generally_font = QFont('楷体', 15)
main_layout = QVBoxLayout()
font_v = QFont('楷体', 14)
'''
*** 3.图片检索界面 ***
'''
up_widget = QWidget()
up_layout = QHBoxLayout()
# 图片检索左上区域
up_left_widget = QWidget()
up_left_layout = QVBoxLayout()
title_0 = QLabel("Query Image")
self.input_img_label = QLabel()
self.output_imge_label = QLabel()
input_src_img = cv2.imread(self.input_fname)
input_img = cv2.resize(input_src_img, (360, 400))
cv2.imwrite("UI_images/input.jpg", input_img)
self.input_img_label.setPixmap(QPixmap("UI_images/input.jpg"))
self.output_imge_label.setPixmap(QPixmap("UI_images/input.jpg"))
btn_upload = QPushButton("上传图片📂")
btn_upload.setFont(generally_font)
btn_upload.setStyleSheet("QPushButton{color:white}"
"QPushButton:hover{background-color: rgb(2,110,180);}"
"QPushButton{background-color:rgb(48,124,208)}"
"QPushButton{border:2px}"
"QPushButton{border-radius:5px}"
"QPushButton{padding:5px 5px}"
"QPushButton{margin:5px 5px}")
btn_upload.setCursor(QCursor(Qt.PointingHandCursor))
btn_upload.clicked.connect(self.get_img_file)
up_left_layout.addWidget(title_0)
up_left_layout.addWidget(self.input_img_label, 0, Qt.AlignCenter)
up_left_layout.addWidget(btn_upload)
up_left_widget.setLayout(up_left_layout)
# 图片检索右上区域
up_right_widget = QWidget()
up_right_layout = QVBoxLayout()
title_1 = QLabel("Search Result")
btn_search = QPushButton("开始检索🔭")
btn_search.setFont(generally_font)
btn_search.setStyleSheet("QPushButton{color:white}"
"QPushButton:hover{background-color: rgb(2,110,180);}"
"QPushButton{background-color:rgb(48,124,208)}"
"QPushButton{border:2px}"
"QPushButton{border-radius:5px}"
"QPushButton{padding:5px 5px}"
"QPushButton{margin:5px 5px}")
btn_search.setCursor(QCursor(Qt.PointingHandCursor))
btn_search.clicked.connect(self.to_search)
up_right_layout.addWidget(title_1)
up_right_layout.addWidget(self.output_imge_label, 0, Qt.AlignCenter)
up_right_layout.addWidget(btn_search)
up_right_widget.setLayout(up_right_layout)
up_layout.addWidget(up_left_widget)
up_layout.addWidget(up_right_widget)
up_widget.setLayout(up_layout)
# 图片检索下方区域
'''
*** 4. 视频识别界面 ***
'''
video_widget = QWidget()
video_layout = QVBoxLayout()
self.video_title2 = QLabel("车辆检测区")
self.video_title2.setFont(font_v)
self.video_title2.setAlignment(Qt.AlignCenter)
self.video_title2.setFont(font_v)
self.DisplayLabel = QLabel()
self.DisplayLabel.setPixmap(QPixmap(""))
self.btn_open = QPushButton("开始识别(选择文件)")
self.btn_open.setFont(font_v)
self.btn_open.setStyleSheet("QPushButton{color:white}"
"QPushButton:hover{background-color: rgb(2,110,180);}"
"QPushButton{background-color:rgb(48,124,208)}"
"QPushButton{border:2px}"
"QPushButton{border-radius:5px}"
"QPushButton{padding:5px 5px}"
"QPushButton{margin:5px 5px}")
self.btn_close = QPushButton("结束演示")
self.btn_close.setFont(font_v)
self.btn_close.setStyleSheet("QPushButton{color:white}"
"QPushButton:hover{background-color: rgb(2,110,180);}"
"QPushButton{background-color:rgb(48,124,208)}"
"QPushButton{border:2px}"
"QPushButton{border-radius:5px}"
"QPushButton{padding:5px 5px}"
"QPushButton{margin:5px 5px}")
# self.btn_open_sure.clicked.connect(self.open_sure)
self.btn_open.clicked.connect(self.open)
self.btn_close.clicked.connect(self.close)
video_layout.setAlignment(Qt.AlignCenter)
video_layout.addWidget(self.video_title2)
video_layout.addWidget(self.DisplayLabel)
# video_layout.addWidget(self.btn_open_sure)
video_layout.addWidget(self.btn_open)
video_layout.addWidget(self.btn_close)
video_widget.setLayout(video_layout)
'''
*** 5. 关于界面 ***
'''
about_widget = QWidget()
about_layout = QVBoxLayout()
about_title = QLabel('欢迎使用红外车辆检测系统😀')
about_title.setFont(QFont('楷体', 18))
about_title.setAlignment(Qt.AlignCenter)
about_img = QLabel()
about_img.setPixmap(QPixmap('UI_images/about3.jpg'))
about_img.setAlignment(Qt.AlignCenter)
label_super = QLabel()
label_super.setText("<a href='https://www.baidu.com/'>我的个人主页</a>")
label_super.setFont(QFont('楷体', 12))
label_super.setOpenExternalLinks(True)
label_super.setAlignment(Qt.AlignRight)
about_layout.addWidget(about_title)
about_layout.addStretch()
about_layout.addWidget(about_img)
about_layout.addStretch()
about_layout.addWidget(label_super)
about_widget.setLayout(about_layout)
# 主页面设置
main_layout.addWidget(up_widget)
main_widget.setLayout(main_layout)
self.addTab(main_widget, '图片检测')
self.addTab(video_widget, '视频检测')
self.addTab(about_widget, '关于')
self.setTabIcon(0, QIcon('UI_images/图片.png'))
self.setTabIcon(1, QIcon('UI_images/直播.png'))
self.setTabIcon(3, QIcon('UI_images/logo_about.png'))
def closeEvent(self, event):
reply = QMessageBox.question(self,
'退出',
"是否要退出程序?",
QMessageBox.Yes | QMessageBox.No,
QMessageBox.No)
if reply == QMessageBox.Yes:
self.close()
event.accept()
else:
event.ignore()
'''
### 4. 视频识别相关功能 ###
'''
def open_sure(self):
# 也可以设置成摄像头
# TODO 修改文件夹位置
self.fileName = 'images/cam2.mkv'
self.cap = cv2.VideoCapture(self.fileName)
th = threading.Thread(target=self.display_video)
th.start()
def open(self):
# 选择录像文件进行读取
mp4_fileName, fileType = QFileDialog.getOpenFileName(self, 'Choose file', '', '*.mp4, *.mkv')
if mp4_fileName:
self.source = mp4_fileName
th = threading.Thread(target=self.display_video)
th.start()
def close(self):
self.stopEvent.set()
self.set_down()
def display_video(self):
# 首先把打开按钮关闭
self.btn_open.setEnabled(False)
# self.btn_open_sure.setEnabled(False)
self.btn_close.setEnabled(True)
# todo 这里执行显示的逻辑
webcam =False
agnostic_nms = False
augment = False
classes = None
conf_thres = 0.4
device = ''
img_size = 640
iou_thres = 0.5
view_img = False
weights = './weights/best.pt'
# Initialize
device = torch_utils.select_device(device)
# if os.path.exists(out):
# shutil.rmtree(out) # delete output folder
# os.makedirs(out) # make new output folder
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(img_size, s=model.stride.max()) # check img_size
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
modelc.to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(self.source, img_size=imgsz)
else:
save_img = True
dataset = LoadImages(self.source, img_size=imgsz)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Run inference
t0 = time.time()
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = torch_utils.time_synchronized()
pred = model(img, augment=augment)[0]
# Apply NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes=classes, agnostic=agnostic_nms)
t2 = torch_utils.time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else:
p, s, im0 = path, '', im0s
# save_path = str(Path(out) / Path(p).name)
# txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '')
# s += '%gx%g ' % img.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
# Write results
for *xyxy, conf, cls in det:
# print(names[int(cls)])
# if names[int(cls)] == "person":
# if save_img or view_img: # Add bbox to image
label = '%s %.2f' % (names[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=(0, 0, 255), line_thickness=3)
frame = im0
frame_height = frame.shape[0]
frame_width = frame.shape[1]
frame_scale = 500 / frame_height
frame_resize = cv2.resize(frame, (int(frame_width * frame_scale), int(frame_height * frame_scale)))
# frame_final = cv2.cvtColor(frame_resize, cv2.COLOR_RGB2BGR)
# cv2.imshow("x", frame_resize)
cv2.imwrite("tmp.jpg", frame_resize)
# frame_final = frame_resize
# img = QImage(frame_final.data, frame_final.shape[1], frame_final.shape[0], QImage.Format_RGB888)
self.DisplayLabel.setPixmap(QPixmap("tmp.jpg"))
# print(self.stopEvent.is_set())
if cv2.waitKey(25) & self.stopEvent.is_set() == True:
self.stopEvent.clear()
self.DisplayLabel.clear()
self.btn_close.setEnabled(False)
self.btn_open.setEnabled(True)
# self.btn_open_sure.setEnabled(True)
self.set_down()
break
self.btn_open.setEnabled(True)
# self.btn_open_sure.setEnabled(True)
self.btn_close.setEnabled(False)
self.set_down()
def set_down(self):
self.DisplayLabel.setPixmap(QPixmap("UI_images/ae862.jpg"))
def get_img_file(self):
# 上传图片
openfile_name = QFileDialog.getOpenFileName(self, '选择文件', '', 'Image files(*.jpg , *.png)')
img_name = openfile_name[0]
if img_name == '':
pass
else:
src_img = cv2.imread(img_name)
src_img_height = src_img.shape[0]
src_img_width = src_img.shape[1]
target_img_height = 400
ratio = target_img_height / src_img_height
target_img_width = int(src_img_width * ratio)
target_img = cv2.resize(src_img, (target_img_width, target_img_height))
cv2.imwrite("UI_images/input_single.jpg", target_img)
self.input_img_label.setPixmap(QPixmap("UI_images/input_single.jpg"))
self.single_source = img_name
def to_search(self):
if self.single_source == "":
QMessageBox.information(self, "警告", "请先上传图片!")
else:
# todo 这里执行显示的逻辑
webcam = False
agnostic_nms = False
augment = False
classes = None
conf_thres = 0.4
device = ''
img_size = 640
iou_thres = 0.5
view_img = False
weights = './weights/best.pt'
# Initialize
device = torch_utils.select_device(device)
# if os.path.exists(out):
# shutil.rmtree(out) # delete output folder
# os.makedirs(out) # make new output folder
half = device.type != 'cpu' # half precision only supported on CUDA
# Load model
model = attempt_load(weights, map_location=device) # load FP32 model
imgsz = check_img_size(img_size, s=model.stride.max()) # check img_size
if half:
model.half() # to FP16
# Second-stage classifier
classify = False
if classify:
modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
modelc.to(device).eval()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(self.single_source, img_size=imgsz)
else:
save_img = True
dataset = LoadImages(self.single_source, img_size=imgsz)
# Get names and colors
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Run inference
t0 = time.time()
img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img
_ = model(img.half() if half else img) if device.type != 'cpu' else None # run once
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float() # uint8 to fp16/32
img /= 255.0 # 0 - 255 to 0.0 - 1.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = torch_utils.time_synchronized()
pred = model(img, augment=augment)[0]
# Apply NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes=classes, agnostic=agnostic_nms)
t2 = torch_utils.time_synchronized()
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
else:
p, s, im0 = path, '', im0s
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
if det is not None and len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
# Write results
for *xyxy, conf, cls in det:
# print(names[int(cls)])
# if names[int(cls)] == "person":
# if save_img or view_img: # Add bbox to image
label = '%s %.2f' % (names[int(cls)], conf)
plot_one_box(xyxy, im0, label=label, color=(0, 0, 255), line_thickness=3)
frame = im0
frame_height = frame.shape[0]
frame_width = frame.shape[1]
frame_scale = 400 / frame_height
frame_resize = cv2.resize(frame, (int(frame_width * frame_scale), int(frame_height * frame_scale)))
frame_final = cv2.cvtColor(frame_resize, cv2.COLOR_RGB2BGR)
cv2.imwrite("images/single_detect_result.jpg", frame_final)
self.output_imge_label.setPixmap(QPixmap("images/single_detect_result.jpg"))
if __name__ == "__main__":
app = QApplication(sys.argv)
mainWindow = MainWindow()
mainWindow.show()
sys.exit(app.exec_())
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。