1 Star 0 Fork 1

BI4PWI/CasRel

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
data_loader.py 5.81 KB
一键复制 编辑 原始数据 按行查看 历史
weizhepei 提交于 2020-04-05 17:00 . add source
#! -*- coding:utf-8 -*-
import numpy as np
import re, os, json
from random import choice
BERT_MAX_LEN = 512
RANDOM_SEED = 2019
def find_head_idx(source, target):
target_len = len(target)
for i in range(len(source)):
if source[i: i + target_len] == target:
return i
return -1
def to_tuple(sent):
triple_list = []
for triple in sent['triple_list']:
triple_list.append(tuple(triple))
sent['triple_list'] = triple_list
def seq_padding(batch, padding=0):
length_batch = [len(seq) for seq in batch]
max_length = max(length_batch)
return np.array([
np.concatenate([seq, [padding] * (max_length - len(seq))]) if len(seq) < max_length else seq for seq in batch
])
def load_data(train_path, dev_path, test_path, rel_dict_path):
train_data = json.load(open(train_path))
dev_data = json.load(open(dev_path))
test_data = json.load(open(test_path))
id2rel, rel2id = json.load(open(rel_dict_path))
id2rel = {int(i): j for i, j in id2rel.items()}
num_rels = len(id2rel)
random_order = list(range(len(train_data)))
np.random.seed(RANDOM_SEED)
np.random.shuffle(random_order)
train_data = [train_data[i] for i in random_order]
for sent in train_data:
to_tuple(sent)
for sent in dev_data:
to_tuple(sent)
for sent in test_data:
to_tuple(sent)
print("train_data len:", len(train_data))
print("dev_data len:", len(dev_data))
print("test_data len:", len(test_data))
return train_data, dev_data, test_data, id2rel, rel2id, num_rels
class data_generator:
def __init__(self, data, tokenizer, rel2id, num_rels, maxlen, batch_size=32):
self.data = data
self.batch_size = batch_size
self.tokenizer = tokenizer
self.maxlen = maxlen
self.rel2id = rel2id
self.num_rels = num_rels
self.steps = len(self.data) // self.batch_size
if len(self.data) % self.batch_size != 0:
self.steps += 1
def __len__(self):
return self.steps
def __iter__(self):
while True:
idxs = list(range(len(self.data)))
np.random.seed(RANDOM_SEED)
np.random.shuffle(idxs)
tokens_batch, segments_batch, sub_heads_batch, sub_tails_batch, sub_head_batch, sub_tail_batch, obj_heads_batch, obj_tails_batch = [], [], [], [], [], [], [], []
for idx in idxs:
line = self.data[idx]
text = ' '.join(line['text'].split()[:self.maxlen])
tokens = self.tokenizer.tokenize(text)
if len(tokens) > BERT_MAX_LEN:
tokens = tokens[:BERT_MAX_LEN]
text_len = len(tokens)
s2ro_map = {}
for triple in line['triple_list']:
triple = (self.tokenizer.tokenize(triple[0])[1:-1], triple[1], self.tokenizer.tokenize(triple[2])[1:-1])
sub_head_idx = find_head_idx(tokens, triple[0])
obj_head_idx = find_head_idx(tokens, triple[2])
if sub_head_idx != -1 and obj_head_idx != -1:
sub = (sub_head_idx, sub_head_idx + len(triple[0]) - 1)
if sub not in s2ro_map:
s2ro_map[sub] = []
s2ro_map[sub].append((obj_head_idx,
obj_head_idx + len(triple[2]) - 1,
self.rel2id[triple[1]]))
if s2ro_map:
token_ids, segment_ids = self.tokenizer.encode(first=text)
if len(token_ids) > text_len:
token_ids = token_ids[:text_len]
segment_ids = segment_ids[:text_len]
tokens_batch.append(token_ids)
segments_batch.append(segment_ids)
sub_heads, sub_tails = np.zeros(text_len), np.zeros(text_len)
for s in s2ro_map:
sub_heads[s[0]] = 1
sub_tails[s[1]] = 1
sub_head, sub_tail = choice(list(s2ro_map.keys()))
obj_heads, obj_tails = np.zeros((text_len, self.num_rels)), np.zeros((text_len, self.num_rels))
for ro in s2ro_map.get((sub_head, sub_tail), []):
obj_heads[ro[0]][ro[2]] = 1
obj_tails[ro[1]][ro[2]] = 1
sub_heads_batch.append(sub_heads)
sub_tails_batch.append(sub_tails)
sub_head_batch.append([sub_head])
sub_tail_batch.append([sub_tail])
obj_heads_batch.append(obj_heads)
obj_tails_batch.append(obj_tails)
if len(tokens_batch) == self.batch_size or idx == idxs[-1]:
tokens_batch = seq_padding(tokens_batch)
segments_batch = seq_padding(segments_batch)
sub_heads_batch = seq_padding(sub_heads_batch)
sub_tails_batch = seq_padding(sub_tails_batch)
obj_heads_batch = seq_padding(obj_heads_batch, np.zeros(self.num_rels))
obj_tails_batch = seq_padding(obj_tails_batch, np.zeros(self.num_rels))
sub_head_batch, sub_tail_batch = np.array(sub_head_batch), np.array(sub_tail_batch)
yield [tokens_batch, segments_batch, sub_heads_batch, sub_tails_batch, sub_head_batch, sub_tail_batch, obj_heads_batch, obj_tails_batch], None
tokens_batch, segments_batch, sub_heads_batch, sub_tails_batch, sub_head_batch, sub_tail_batch, obj_heads_batch, obj_tails_batch, = [], [], [], [], [], [], [], []
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/BI4PWI/CasRel.git
[email protected]:BI4PWI/CasRel.git
BI4PWI
CasRel
CasRel
master

搜索帮助