1 Star 0 Fork 4

zyzgreater/基于YOLO的人群密度检测系统设计与实现

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
detect_web.py 8.85 KB
一键复制 编辑 原始数据 按行查看 历史
qiutian 提交于 2024-01-07 21:52 . 模型性能测试
import torch
import numpy as np
from models.experimental import attempt_load
from utils.augmentations import letterbox
from utils.general import non_max_suppression, scale_boxes
from utils.torch_utils import select_device
from random import randint
import cv2
from PIL import Image
from matplotlib.colors import LinearSegmentedColormap
import io
from scipy.ndimage import gaussian_filter
class VideoCamera(object):
def __init__(self, video_path=None, image_path=None, _camera=False, _image=False, _video=False):
self.heatmap_colormap = LinearSegmentedColormap.from_list('heatmap', [(0, 'blue'), (1, 'red')], N=256,
gamma=1.0)
self._camera = _camera
self._image = _image
self._video = _video
# 通过opencv获取实时视频流
self.img_size = 640
self.threshold = 0.4
self.max_frame = 160
if self._camera:
self.video = cv2.VideoCapture(0) # 提供检测视频或者调用摄像头
elif self._video:
self.video = cv2.VideoCapture(video_path)
else:
self.video = None
self.imgpath = image_path
self.weights = 'weights/best.pt' #yolov5权重文件
self.device = '0' if torch.cuda.is_available() else 'cpu'
self.device = select_device(self.device)
model = attempt_load(self.weights)
model.to(self.device).eval()
# model.half()
model.float()
# torch.save(model, 'test.pt')
self.m = model
self.names = model.module.names if hasattr(
model, 'module') else model.names
self.colors = [
(randint(0, 255), randint(0, 255), randint(0, 255)) for _ in self.names
]
def __del__(self):
if self._camera:
self.video.release()
else:
pass
def generate_heatmap(self, frame, pred_boxes):
heatmap = np.zeros((56, 56), dtype=np.float32) # 将热力图的大小调整为56x56
for (x1, y1, x2, y2, _, conf) in pred_boxes:
# 将目标的位置映射到56x56的热力图上
x1_scaled = int((x1 / frame.shape[1]) * 56)
y1_scaled = int((y1 / frame.shape[0]) * 56)
x2_scaled = int((x2 / frame.shape[1]) * 56)
y2_scaled = int((y2 / frame.shape[0]) * 56)
heatmap[y1_scaled:y2_scaled, x1_scaled:x2_scaled] += 1
heatmap = gaussian_filter(heatmap, sigma=2)
heatmap = (heatmap - np.min(heatmap)) / (np.max(heatmap) - np.min(heatmap) + 1e-8)
if not self._camera:
heatmap = 1 - heatmap
heatmap = (heatmap * 255).astype(np.uint8)
# 调整颜色映射
colormap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
return colormap
def combine_frames(self, frame, heatmap):
combined_frame = cv2.addWeighted(frame, 0.7, heatmap, 0.3, 0)
return combined_frame
def detect(self, frame):
ori_shape = frame.shape[:2]
im0, img = self.preprocess(frame) # 转到处理函数
pred = self.m(img, augment=False)[0] # 输入到模型
pred = pred.float()
pred = non_max_suppression(pred, self.threshold, 0.3)
pred_boxes = []
image_info = {}
count = 0
for det in pred:
if det is not None and len(det):
det[:, :4] = scale_boxes(
img.shape[2:], det[:, :4], im0.shape).round()
for *x, conf, cls_id in det:
lbl = self.names[int(cls_id)]
x1, y1 = int(x[0]), int(x[1])
x2, y2 = int(x[2]), int(x[3])
pred_boxes.append(
(x1, y1, x2, y2, lbl, conf))
count += 1
key = '{}-{:02}'.format(lbl, count)
image_info[key] = ['{}×{}'.format(
x2 - x1, y2 - y1), np.round(float(conf), 3)]
frame_without_bboxes = self.plot_bboxes(frame, pred_boxes, show_boxes=False)
# Generate heatmap
heatmap = self.generate_heatmap(frame_without_bboxes, pred_boxes)
ret_hm, jpeg_hm = cv2.imencode('.jpg', heatmap) # 热力图大小为56*56
frame_with_bboxes = self.plot_bboxes(frame, pred_boxes)
ret, jpeg = cv2.imencode('.jpg', frame_with_bboxes)
return jpeg.tobytes(), jpeg_hm.tobytes(), ori_shape, count # count为人数
def get_frame_video(self):
if self._video:
while True:
ret, frame = self.video.read() # 读取视频帧
if not ret:
break
jpeg, jpeg_hm, ori_shape, _ = self.detect(frame)
yield jpeg, jpeg_hm, ori_shape[::-1] # 使用 yield 生成视频流
def get_frame(self):
if self._image:
frame = cv2.imread(self.imgpath)
jpeg, jpeg_hm, ori_shape, _ = self.detect(frame)
return jpeg, jpeg_hm, ori_shape[::-1]
if self._camera:
while True:
ret, frame = self.video.read() #读视频
if not ret: break
jpeg, jpeg_hm, ori_shape, _ = self.detect(frame)
return jpeg, jpeg_hm, ori_shape[::-1]
def preprocess(self, img):
img0 = img.copy()
img = letterbox(img, new_shape=self.img_size)[0]
img = img[:, :, ::-1].transpose(2, 0, 1)
img = np.ascontiguousarray(img)
img = torch.from_numpy(img).to(self.device)
# img = img.half() # 半精度
img = img.float() # 半精度
img /= 255.0 # 图像归一化
if img.ndimension() == 3:
img = img.unsqueeze(0)
return img0, img
def plot_bboxes(self, image, bboxes, line_thickness=None, show_boxes=True):
tl = line_thickness or round(0.002 * (image.shape[0] + image.shape[1]) / 2) + 1
for (x1, y1, x2, y2, cls_id, conf) in bboxes:
color = self.colors[list(self.names.values()).index(cls_id)]
c1, c2 = (x1, y1), (x2, y2)
# Only draw boxes if show_boxes is True
if show_boxes:
cv2.rectangle(image, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
tf = max(tl - 1, 1)
t_size = cv2.getTextSize(cls_id, 0, fontScale=tl / 3, thickness=tf)[0]
c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
cv2.rectangle(image, c1, c2, color, -1, cv2.LINE_AA)
cv2.putText(image, '{}-{:.2f} '.format(cls_id, conf), (c1[0], c1[1] - 2), 0, tl / 3,
[225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)
return image
def image_test(image_path):
# 创建 VideoCamera 对象
camera = VideoCamera(image_path=image_path, _image=True)
# 获取处理后的图像
result_bytes, _, ori_shape = camera.get_frame()
# 将字节流转换为图像
result_image = Image.open(io.BytesIO(result_bytes))
result_image = np.array(result_image)
# 显示图像
cv2.imshow('1', result_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def image_test_hm(image_path):
# 创建 VideoCamera 对象
camera = VideoCamera(image_path=image_path, _image=True)
# 获取处理后的图像
_, result_bytes, ori_shape = camera.get_frame()
# 将字节流转换为图像
result_image = Image.open(io.BytesIO(result_bytes))
result_image = cv2.resize(np.array(result_image), ori_shape)
# 显示图像
cv2.imshow('1', result_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
def video_test(video_path):
camera = VideoCamera(video_path=video_path, _video=True)
for frame_bytes in camera.get_frame_video():
# 将 JPEG 数据解码为图像
jpeg = frame_bytes[0]
result_image = Image.open(io.BytesIO(jpeg))
result_image = np.array(result_image)
# 在窗口中显示图像
cv2.imshow('Video', result_image)
# 检测按键,如果是 'q' 则退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放视频流和关闭窗口
camera.__del__()
cv2.destroyAllWindows()
def video_test_hm(video_path):
camera = VideoCamera(video_path=video_path, _video=True)
for frame_bytes in camera.get_frame_video():
# 将 JPEG 数据解码为图像
jpeg_hm = frame_bytes[1]
ori_shape = frame_bytes[2]
result_image = Image.open(io.BytesIO(jpeg_hm))
result_image = cv2.resize(np.array(result_image), ori_shape)
# 在窗口中显示图像
cv2.imshow('Video', result_image)
# 检测按键,如果是 'q' 则退出循环
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放视频流和关闭窗口
camera.__del__()
cv2.destroyAllWindows()
if __name__ == "__main__":
image_test('test.jpg')
# image_test_hm("test.jpg")
# video_test('test.mp4')
# video_test_hm('test.mp4')
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/zyzgreater/yolov5-head.git
[email protected]:zyzgreater/yolov5-head.git
zyzgreater
yolov5-head
基于YOLO的人群密度检测系统设计与实现
master

搜索帮助