代码拉取完成,页面将自动刷新
/****************************************************************************
*
* Copyright (c) 2017 - 2018 by Rockchip Corp. All rights reserved.
*
* The material in this file is confidential and contains trade secrets
* of Rockchip Corporation. This is proprietary information owned by
* Rockchip Corporation. No part of this work may be disclosed,
* reproduced, copied, transmitted, or used in any way for any purpose,
* without the express written permission of Rockchip Corporation.
*
*****************************************************************************/
#ifndef _RKNN_MATMUL_API_H
#define _RKNN_MATMUL_API_H
#ifdef __cplusplus
extern "C" {
#endif
#include "rknn_api.h"
typedef rknn_context rknn_matmul_ctx;
typedef struct _rknn_quant_params
{
char name[RKNN_MAX_NAME_LEN];
// matmul tensor scale
float* scale;
int32_t scale_len;
// matmul tensor zero point
int32_t* zp;
int32_t zp_len;
} rknn_quant_params;
typedef enum _rknn_matmul_type
{
RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT32 = 1,
RKNN_INT8_MM_INT8_TO_INT32 = 2,
RKNN_INT8_MM_INT8_TO_INT8 = 3,
RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT16 = 4,
RKNN_FLOAT16_MM_INT8_TO_FLOAT32 = 5,
RKNN_FLOAT16_MM_INT8_TO_FLOAT16 = 6,
RKNN_FLOAT16_MM_INT4_TO_FLOAT32 = 7,
RKNN_FLOAT16_MM_INT4_TO_FLOAT16 = 8,
RKNN_INT4_MM_INT4_TO_INT16 = 10,
RKNN_INT8_MM_INT4_TO_INT32 = 11,
} rknn_matmul_type;
inline static const char* get_matmul_type_string(rknn_matmul_type type)
{
switch (type) {
case RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT32:
return "RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT32";
case RKNN_INT8_MM_INT8_TO_INT32:
return "RKNN_INT8_MM_INT8_TO_INT32";
case RKNN_INT8_MM_INT8_TO_INT8:
return "RKNN_INT8_MM_INT8_TO_INT8";
case RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT16:
return "RKNN_FLOAT16_MM_FLOAT16_TO_FLOAT16";
case RKNN_FLOAT16_MM_INT8_TO_FLOAT32:
return "RKNN_FLOAT16_MM_INT8_TO_FLOAT32";
case RKNN_FLOAT16_MM_INT8_TO_FLOAT16:
return "RKNN_FLOAT16_MM_INT8_TO_FLOAT16";
case RKNN_INT4_MM_INT4_TO_INT16:
return "RKNN_INT4_MM_INT4_TO_INT16";
case RKNN_FLOAT16_MM_INT4_TO_FLOAT32:
return "RKNN_FLOAT16_MM_INT4_TO_FLOAT32";
case RKNN_INT8_MM_INT4_TO_INT32:
return "RKNN_INT8_MM_INT4_TO_INT32";
default:
return "UNKNOW";
}
}
typedef struct _rknn_matmul_tensor_attr
{
char name[RKNN_MAX_NAME_LEN];
// indicate A(M, K) or B(K, N) or C(M, N)
uint32_t n_dims;
uint32_t dims[RKNN_MAX_DIMS];
// matmul tensor size
uint32_t size;
// matmul tensor data type
// int8 : A, B
// int32: C
rknn_tensor_type type;
} rknn_matmul_tensor_attr;
typedef struct _rknn_matmul_io_attr
{
// indicate A(M, K) or B(K, N) or C(M, N)
rknn_matmul_tensor_attr A;
rknn_matmul_tensor_attr B;
rknn_matmul_tensor_attr C;
} rknn_matmul_io_attr;
/*
matmul dynamic shape struct
*/
typedef struct _rknn_matmul_shape
{
int32_t M;
int32_t K;
int32_t N;
} rknn_matmul_shape;
/*
matmul information struct
*/
typedef struct rknn_matmul_info_t
{
int32_t M;
int32_t K; // limit: RK3566/3568: int8 type must be aligned with 32byte, float16 type must be aligned with 16byte;
// RK3562: int8 type must be aligned with 32byte, float16 type must be aligned with 32byte;
// RK3588/3576: int8 type must be aligned with 32byte, float16 type must be aligned with 32byte,
// int4 type must be aligned with 32byte;
int32_t N; // limit: RK3566/3568: int8 type must be aligned with 16byte, float16 type must be aligned with 8byte;
// RK3562: int8 type must be aligned with 16byte, float16 type must be aligned with 8byte;
// RK3588/3576: int8 type must be aligned with 32byte, float16 type must be aligned with 16byte,
// int4 type must be aligned with 64byte;
// matmul data type
// int4: int4(A) x int4(B) -> int16(C)
// int8: int8(A) x int8(B) -> int32(C)
// float16: float16(A) x float16(B) -> float32(C)
rknn_matmul_type type;
// matmul native layout for B
// 0: normal layout
// 1: native layout
int16_t B_layout;
// matmul quant type for B
// A and C only support per layer
// 0: per layer
// 1: per channel
int16_t B_quant_type;
// matmul native layout for A and C
// 0: normal layout
// 1: native layout
int16_t AC_layout;
// matmul quant type for A and C, only support 0
int16_t AC_quant_type;
// iommu domain id, each domain has 4GB of space
int32_t iommu_domain_id;
// reserved field
int8_t reserved[36];
} rknn_matmul_info;
/* rknn_matmul_create
params:
rknn_matmul_ctx *ctx the handle of context.
rknn_matmul_info *info the matmal information.
rknn_matmul_io_attr *io_attr inputs/output attribute
return:
int error code
*/
int rknn_matmul_create(rknn_matmul_ctx* ctx, rknn_matmul_info* info, rknn_matmul_io_attr* io_attr);
/* rknn_matmul_create_dyn_shape
params:
rknn_matmul_ctx *ctx the handle of context.
rknn_matmul_info *info the matmal information.
int shape_num the supported shape number of matmul.
rknn_matmul_shape dynamic_shapes[] the supported M,K,N shape struct array.
rknn_matmul_io_attr *io_attr the array of inputs and output attribute
return:
int error code
*/
/*
原来的info.M, K, N无效
*/
int rknn_matmul_create_dyn_shape(rknn_matmul_ctx* ctx, rknn_matmul_info* info, int shape_num,
rknn_matmul_shape dynamic_shapes[], rknn_matmul_io_attr io_attrs[]);
/* rknn_matmul_set_io_mem
params:
rknn_matmul_ctx ctx the handle of context.
rknn_tensor_mem *mem the pointer of tensor memory information.
rknn_matmul_tensor_attr *attr the attribute of input or output tensor buffer.
return:
int error code.
formula:
C = A * B,
limit:
K max: k <= 10240
K limit: RK3566/3568: int8 type must be aligned with 32byte, float16 type must be aligned with 16byte;
RK3562: int8 type must be aligned with 32byte, float16 type must be aligned with 32byte;
RK3588/3576: int8 type must be aligned with 32byte, float16 type must be aligned with 32byte,
int4 type must be aligned with 32byte;
N limit: RK3566/3568: int8 type must be aligned with 16byte, float16 type must be aligned with 8byte;
RK3562: int8 type must be aligned with 16byte, float16 type must be aligned with 8byte;
RK3588/3576: int8 type must be aligned with 32byte, float16 type must be aligned with 16byte,
int4 type must be aligned with 64byte;
A shape: M x K
normal layout: (M, K)
[M1K1, M1K2, ..., M1Kk,
M2K1, M2K2, ..., M2Kk,
...
MmK1, MmK2, ..., MmKk]
for RK3566/3568:
int8:
native layout: (K / 8, M, 8)
[K1M1, K2M1, ..., K8M1,
K9M2, K10M2, ..., K16M2,
...
K(k-7)Mm, K(k-6)Mm, ..., KkMm]
float16:
native layout: (K / 4, M, 4)
[K1M1, K2M1, ..., K4M1,
K9M2, K10M2, ..., K8M2,
...
K(k-3)Mm, K(k-2)Mm, ..., KkMm]
for RK3562:
int8:
native layout: (K / 16, M, 16)
[K1M1, K2M1, ..., K16M1,
K17M2, K18M2, ..., K32M2,
...
K(k-15)Mm, K(k-14)Mm, ..., KkMm]
float16:
native layout: (K / 8, M, 8)
[K1M1, K2M1, ..., K8M1,
K9M2, K10M2, ..., K16M2,
...
K(k-7)Mm, K(k-6)Mm, ..., KkMm]
for RK3588/3576:
int4:
native layout: (K / 32, M, 32)
[K1M1, K2M1, ..., K32M1,
K33M2, K10M2, ..., K64M2,
...
K(k-31)Mm, K(k-30)Mm, ..., KkMm]
int8:
native layout: (K / 16, M, 16)
[K1M1, K2M1, ..., K16M1,
K17M2, K18M2, ..., K32M2,
...
K(k-15)Mm, K(k-14)Mm, ..., KkMm]
float16:
native layout: (K / 8, M, 8)
[K1M1, K2M1, ..., K8M1,
K9M2, K10M2, ..., K16M2,
...
K(k-7)Mm, K(k-6)Mm, ..., KkMm]
B shape: K x N
normal layout: (K, N)
[K1N1, K1N2, ..., K1Nn,
K2N1, K2N2, ..., K2Nn,
...
KkN1, KkN2, ..., KkNn]
for RK3566/3568:
int8:
native layout: (N / 16, K / 32, 16, 32)
[K1N1, K2N1, ..., K32N1,
K1N2, K2N2, ..., K32N2,
...
K1N16, K2N16, ..., K32N16,
K33N1, K34N1, ..., K64N1,
K33N2, K34N2, ..., K64N2,
...
K(k-31)N16, K(k-30)N16, ..., KkN16,
K1N17, K2N17, ..., K32N17,
K1N18, K2N18, ..., K32N18,
...
K(k-31)Nn, K(k-30)Nn, ..., KkNn]
float16:
native layout: (N / 8, K / 16, 8, 16)
[K1N1, K2N1, ..., K16N1,
K1N2, K2N2, ..., K16N2,
...
K1N8, K2N8, ..., K16N8,
K17N1, K18N1, ..., K32N1,
K17N2, K18N2, ..., K32N2,
...
K(k-15)N8, K(k-30)N8, ..., KkN8,
K1N9, K2N9, ..., K16N9,
K1N10, K2N10, ..., K16N10,
...
K(k-15)Nn, K(k-14)Nn, ..., KkNn]
for RK3562:
int8:
native layout: (N / 16, K / 32, 16, 32)
[K1N1, K2N1, ..., K32N1,
K1N2, K2N2, ..., K32N2,
...
K1N16, K2N16, ..., K32N16,
K33N1, K34N1, ..., K64N1,
K33N2, K34N2, ..., K64N2,
...
K(k-31)N16, K(k-30)N16, ..., KkN16,
K1N17, K2N17, ..., K32N17,
K1N18, K2N18, ..., K32N18,
...
K(k-31)Nn, K(k-30)Nn, ..., KkNn]
float16:
native layout: (N / 8, K / 32, 8, 32)
[K1N1, K2N1, ..., K32N1,
K1N2, K2N2, ..., K32N2,
...
K1N8, K2N8, ..., K32N8,
K33N1, K34N1, ..., K64N1,
K33N2, K34N2, ..., K64N2,
...
K(k-31)N8, K(k-30)N8, ..., KkN8,
K1N9, K2N9, ..., K16N9,
K1N10, K2N10, ..., K16N10,
...
K(k-31)Nn, K(k-30)Nn, ..., KkNn]
for RK3588:
when K > 8192, the B data will be split into T segments.
int T = std::ceil(K / 8192);
For example: normal layout -> native layout
K = 20488, N = 4096, T = 3, the data will be split into 3 segments.
subN = rknn_matmul_io_attr.B.dims[2];
subK = rknn_matmul_io_attr.B.dims[3];
(8196, 4096) (4096 / subN, 8196 / subK, subN, subK)
(K, N) = (20488, 4096) -> (8196, 4096) -> (4096 / subN, 8196 / subK, subN, subK)
normal layout (4096, 4096) (4096 / subN, 4096 / subK, subN, subK)
T normal layout T native layout
It is recommended to use the rknn_B_normal_layout_to_native_layout interface for direct data conversion.
for RK3576:
when K > 4096, the B data will be split into T segments.
int T = std::ceil(K / 4096);
For example: normal layout -> native layout
K = 10240, N = 2048, T = 3, the data will be split into 3 segments.
subN = rknn_matmul_io_attr.B.dims[2];
subK = rknn_matmul_io_attr.B.dims[3];
(4096, 2048) (2048 / subN, 4096 / subK, subN, subK)
(K, N) = (10240, 2048) -> (4096, 2048) -> (2048 / subN, 4096 / subK, subN, subK)
normal layout (2048, 2048) (2048 / subN, 2048 / subK, subN, subK)
T normal layout T native layout
It is recommended to use the rknn_B_normal_layout_to_native_layout interface for direct data conversion.
for RK3588/3576:
int4:
native layout: (N / 64, K / 32, 64, 32)
[K1N1, K2N1, ..., K32N1,
K1N2, K2N2, ..., K32N2,
...
K1N64, K2N64, ..., K32N64,
K33N1, K34N1, ..., K64N1,
K33N2, K34N2, ..., K64N2,
...
K(k-31)N64, K(k-30)N64, ..., KkN64,
K1N65, K2N65, ..., K32N65,
K1N66, K2N66, ..., K32N66,
...
K(k-31)Nn, K(k-30)Nn, ..., KkNn]
int8:
native layout: (N / 32, K / 32, 32, 32)
[K1N1, K2N1, ..., K32N1,
K1N2, K2N2, ..., K32N2,
...
K1N32, K2N32, ..., K32N32,
K33N1, K34N1, ..., K64N1,
K33N2, K34N2, ..., K64N2,
...
K(k-31)N32, K(k-30)N32, ..., KkN32,
K1N33, K2N33, ..., K32N33,
K1N34, K2N34, ..., K32N34,
...
K(k-31)Nn, K(k-30)Nn, ..., KkNn]
float16:
native layout: (N / 16, K / 32, 16, 32)
[K1N1, K2N1, ..., K32N1,
K1N2, K2N2, ..., K32N2,
...
K1N16, K2N16, ..., K32N16,
K33N1, K34N1, ..., K64N1,
K33N2, K34N2, ..., K64N2,
...
K(k-31)N16, K(k-30)N16, ..., KkN16,
K1N17, K2N17, ..., K32N17,
K1N18, K2N18, ..., K32N18,
...
K(k-31)Nn, K(k-30)Nn, ..., KkNn]
C shape: M x N
normal layout: (M, N)
[M1N1, M1N2, ..., M1Nn,
M2N1, M2N2, ..., M2Nn,
...
MmN1, MmN2, ..., MmNn]
native layout: (N / 4, M, 4)
[N1M1, N2M1, ..., N4M1,
N5M2, N6M2, ..., N8M2,
...
N(n-3)Mm, N(n-2)Mm, ..., NnMm]
for RK3588:
int4:
native layout: (N / 8, M, 8)
[N1M1, N2M1, ..., N8M1,
N9M2, N10M2, ..., N16M2,
...
N(n-7)Mm, N(n-6)Mm, ..., NnMm]
*/
int rknn_matmul_set_io_mem(rknn_matmul_ctx ctx, rknn_tensor_mem* mem, rknn_matmul_tensor_attr* attr);
/* rknn_matmul_set_core_mask
set rknn core mask.(only support RK3588 in current)
RKNN_NPU_CORE_AUTO: auto mode, default value
RKNN_NPU_CORE_0: core 0 mode
RKNN_NPU_CORE_1: core 1 mode
RKNN_NPU_CORE_2: core 2 mode
RKNN_NPU_CORE_0_1: combine core 0/1 mode
RKNN_NPU_CORE_0_1_2: combine core 0/1/2 mode
input:
rknn_matmul_ctx context the handle of context.
rknn_core_mask core_mask the core mask.
return:
int error code.
*/
int rknn_matmul_set_core_mask(rknn_matmul_ctx context, rknn_core_mask core_mask);
/* rknn_matmul_set_quant_params
set quant params.(only support matmul type RKNN_INT8_MM_INT8_TO_INT8, RKNN_INT8_MM_INT8_TO_INT32)
input:
rknn_matmul_ctx context the handle of context.
rknn_quant_params params quant params.
return:
int error code.
*/
int rknn_matmul_set_quant_params(rknn_matmul_ctx context, rknn_quant_params* params);
/* rknn_matmul_get_quant_params
get per channel quant params.(only support matmul type RKNN_INT8_MM_INT8_TO_INT32)
input:
rknn_matmul_ctx context the handle of context.
rknn_quant_params params quant params.
float scale get scale for user.
return:
int error code.
*/
int rknn_matmul_get_quant_params(rknn_matmul_ctx ctx, rknn_quant_params* params, float* scale);
/* rknn_matmul_set_dynamic_shape
set the matmul input/output shape. matmul will run under current input shape after rknn_matmul_set_dynamic_shape,
only support M dynamicly now.
input:
rknn_matmul_ctx ctx the handle of context.
rknn_matmul_shape* shape the M,K,N shape of matmul currently
return:
int error code.
*/
int rknn_matmul_set_dynamic_shape(rknn_matmul_ctx ctx, rknn_matmul_shape* shape);
/* rknn_matmul_run
run the matmul in blocking mode
params:
rknn_matmul_ctx ctx the handle of context.
return:
int error code.
*/
int rknn_matmul_run(rknn_matmul_ctx ctx);
/* rknn_matmul_destroy
destroy the matmul context
params:
rknn_matmul_ctx ctx the handle of context.
return:
int error code.
*/
int rknn_matmul_destroy(rknn_matmul_ctx ctx);
/* rknn_B_normal_layout_to_native_layout
change the B normal layout buffer to native layout buffer
params:
void* B_input B normal layout buffer.
void* B_output B native layout buffer.
int K K
int N N
int subN subN
int subK subK
rknn_matmul_type type matmul type
return:
int error code.
*/
int rknn_B_normal_layout_to_native_layout(void* B_input, void* B_output, int K, int N, int subN, int subK,
rknn_matmul_type type);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // _RKNN_MATMUL_API_H
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。