代码拉取完成,页面将自动刷新
/*
* Copyright (c) 1999-2024 Stephen Williams ([email protected])
* Copyright CERN 2012 / Stephen Williams ([email protected])
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "config.h"
# include "PExpr.h"
# include "PPackage.h"
# include "netlist.h"
# include "netmisc.h"
# include "netstruct.h"
# include "netvector.h"
# include "compiler.h"
# include <cstdlib>
# include <cstring>
# include <iostream>
# include "ivl_assert.h"
using namespace std;
/*
* The concatenation is also OK an an l-value. This method elaborates
* it as a structural l-value. The return values is the *input* net of
* the l-value, which may feed via part selects to the final
* destination. The caller can connect gate outputs to this signal to
* make the l-value connections.
*/
NetNet* PEConcat::elaborate_lnet_common_(Design*des, NetScope*scope,
bool bidirectional_flag) const
{
ivl_assert(*this, scope);
std::vector<NetNet*> nets(parms_.size());
unsigned width = 0;
unsigned errors = 0;
if (repeat_) {
cerr << get_fileline() << ": sorry: I do not know how to"
" elaborate repeat concatenation nets." << endl;
return 0;
}
/* Elaborate the operands of the concatenation. */
for (unsigned idx = 0 ; idx < nets.size() ; idx += 1) {
if (debug_elaborate) {
cerr << get_fileline() << ": debug: Elaborate subexpression "
<< idx << " of " << nets.size() << " l-values: "
<< *parms_[idx] << endl;
}
if (parms_[idx] == 0) {
cerr << get_fileline() << ": error: Empty expressions "
<< "not allowed in concatenations." << endl;
errors += 1;
continue;
}
if (bidirectional_flag) {
nets[idx] = parms_[idx]->elaborate_bi_net(des, scope);
} else {
nets[idx] = parms_[idx]->elaborate_lnet(des, scope);
}
if (nets[idx] == 0) {
errors += 1;
} else if (nets[idx]->data_type() == IVL_VT_REAL) {
cerr << parms_[idx]->get_fileline() << ": error: "
<< "concatenation operand can no be real: "
<< *parms_[idx] << endl;
errors += 1;
continue;
} else {
width += nets[idx]->vector_width();
}
}
if (errors) {
des->errors += errors;
return 0;
}
/* Make the temporary signal that connects to all the
operands, and connect it up. Scan the operands of the
concat operator from most significant to least significant,
which is the order they are given in the concat list. */
netvector_t*tmp2_vec = new netvector_t(nets[0]->data_type(),width-1,0);
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, tmp2_vec);
/* Assume that the data types of the nets are all the same, so
we can take the data type of any, the first will do. */
osig->local_flag(true);
osig->set_line(*this);
if (bidirectional_flag) {
if (debug_elaborate) {
cerr << get_fileline() << ": debug: Generating tran(VP) "
<< "to connect input l-value to subexpressions."
<< endl;
}
for (unsigned idx = 0 ; idx < nets.size() ; idx += 1) {
unsigned wid = nets[idx]->vector_width();
unsigned off = width - wid;
NetTran*ps = new NetTran(scope, scope->local_symbol(),
osig->vector_width(), wid, off);
des->add_node(ps);
ps->set_line(*this);
connect(ps->pin(0), osig->pin(0));
connect(ps->pin(1), nets[idx]->pin(0));
ivl_assert(*this, wid <= width);
width -= wid;
}
} else {
if (debug_elaborate) {
cerr << get_fileline() << ": debug: Generating part selects "
<< "to connect input l-value to subexpressions."
<< endl;
}
NetPartSelect::dir_t part_dir = NetPartSelect::VP;
for (unsigned idx = 0 ; idx < nets.size() ; idx += 1) {
unsigned wid = nets[idx]->vector_width();
unsigned off = width - wid;
NetPartSelect*ps = new NetPartSelect(osig, off, wid, part_dir);
des->add_node(ps);
ps->set_line(*this);
connect(ps->pin(1), osig->pin(0));
connect(ps->pin(0), nets[idx]->pin(0));
ivl_assert(*this, wid <= width);
width -= wid;
}
ivl_assert(*this, width == 0);
}
return osig;
}
NetNet* PEConcat::elaborate_lnet(Design*des, NetScope*scope) const
{
return elaborate_lnet_common_(des, scope, false);
}
NetNet* PEConcat::elaborate_bi_net(Design*des, NetScope*scope) const
{
return elaborate_lnet_common_(des, scope, true);
}
bool PEConcat::is_collapsible_net(Design*des, NetScope*scope,
NetNet::PortType port_type) const
{
ivl_assert(*this, scope);
// Repeat concatenations are not currently supported.
if (repeat_)
return false;
// Test the operands of the concatenation.
for (unsigned idx = 0 ; idx < parms_.size() ; idx += 1) {
// Empty expressions are not allowed in concatenations
if (parms_[idx] == 0)
return false;
if (!parms_[idx]->is_collapsible_net(des, scope, port_type))
return false;
}
return true;
}
/*
* This private method evaluates the part selects (if any) for the
* signal. The sig argument is the NetNet already located for the
* PEIdent name. The midx and lidx arguments are loaded with the
* results, which may be the whole vector, or a single bit, or
* anything in between. The values are in canonical indices.
*/
bool PEIdent::eval_part_select_(Design*des, NetScope*scope, NetNet*sig,
long&midx, long&lidx) const
{
list<long> prefix_indices;
bool rc = calculate_packed_indices_(des, scope, sig, prefix_indices);
ivl_assert(*this, rc);
const name_component_t&name_tail = path_.back();
// Only treat as part/bit selects any index that is beyond the
// word selects for an array. This is not an array, then
// dimensions==0 and any index is treated as a select.
if (name_tail.index.size() <= sig->unpacked_dimensions()) {
midx = sig->vector_width()-1;
lidx = 0;
return true;
}
ivl_assert(*this, !name_tail.index.empty());
const index_component_t&index_tail = name_tail.index.back();
switch (index_tail.sel) {
default:
cerr << get_fileline() << ": internal error: "
<< "Unexpected sel_ value = " << index_tail.sel << endl;
ivl_assert(*this, 0);
break;
case index_component_t::SEL_IDX_DO:
case index_component_t::SEL_IDX_UP: {
NetExpr*tmp_ex = elab_and_eval(des, scope, index_tail.msb, -1, true);
NetEConst*tmp = dynamic_cast<NetEConst*>(tmp_ex);
if (!tmp) {
cerr << get_fileline() << ": error: Indexed part select "
"base expression must be a constant integral value "
"in this context." << endl;
cerr << get_fileline() << ": : This expression "
"violates that rule: " << *index_tail.msb << endl;
des->errors += 1;
return 0;
}
/* The width (a constant) is calculated here. */
unsigned long wid = 0;
bool flag = calculate_up_do_width_(des, scope, wid);
if (! flag) return false;
/* We have an undefined index and that is out of range. */
if (! tmp->value().is_defined()) {
if (warn_ob_select) {
cerr << get_fileline() << ": warning: "
<< sig->name();
if (sig->unpacked_dimensions() > 0) cerr << "[]";
cerr << "['bx";
if (index_tail.sel ==
index_component_t::SEL_IDX_UP) {
cerr << "+:";
} else {
cerr << "-:";
}
cerr << wid << "] is always outside the vector."
<< endl;
}
return false;
}
long midx_val = tmp->value().as_long();
delete tmp_ex;
if (prefix_indices.size()+1 < sig->packed_dims().size()) {
// Here we are selecting one or more sub-arrays.
// Make this work by finding the indexed sub-arrays and
// creating a generated slice that spans the whole range.
long loff, moff;
unsigned long lwid, mwid;
bool mrc, lrc;
mrc = sig->sb_to_slice(prefix_indices, midx_val, moff, mwid);
if (index_tail.sel == index_component_t::SEL_IDX_UP)
lrc = sig->sb_to_slice(prefix_indices, midx_val+wid-1, loff, lwid);
else
lrc = sig->sb_to_slice(prefix_indices, midx_val-wid+1, loff, lwid);
if (!mrc || !lrc) {
cerr << get_fileline() << ": error: ";
cerr << "Part-select [" << midx_val;
if (index_tail.sel == index_component_t::SEL_IDX_UP) {
cerr << "+:";
} else {
cerr << "-:";
}
cerr << wid << "] exceeds the declared bounds for ";
cerr << sig->name();
if (sig->unpacked_dimensions() > 0) cerr << "[]";
cerr << "." << endl;
des->errors += 1;
return 0;
}
ivl_assert(*this, lwid == mwid);
if (moff > loff) {
lidx = loff;
midx = moff + mwid - 1;
} else {
lidx = moff;
midx = loff + lwid - 1;
}
} else {
midx = sig->sb_to_idx(prefix_indices, midx_val);
if (index_tail.sel == index_component_t::SEL_IDX_UP)
lidx = sig->sb_to_idx(prefix_indices, midx_val+wid-1);
else
lidx = sig->sb_to_idx(prefix_indices, midx_val-wid+1);
if (midx < lidx) {
long tmpx = midx;
midx = lidx;
lidx = tmpx;
}
/* Warn about an indexed part select that is out of range. */
if (warn_ob_select && (lidx < 0)) {
cerr << get_fileline() << ": warning: " << sig->name();
if (sig->unpacked_dimensions() > 0) cerr << "[]";
cerr << "[" << midx_val;
if (index_tail.sel == index_component_t::SEL_IDX_UP) {
cerr << "+:";
} else {
cerr << "-:";
}
cerr << wid << "] is selecting before vector." << endl;
}
if (warn_ob_select && (midx >= (long)sig->vector_width())) {
cerr << get_fileline() << ": warning: " << sig->name();
if (sig->unpacked_dimensions() > 0) {
cerr << "[]";
}
cerr << "[" << midx_val;
if (index_tail.sel == index_component_t::SEL_IDX_UP) {
cerr << "+:";
} else {
cerr << "-:";
}
cerr << wid << "] is selecting after vector." << endl;
}
/* This is completely out side the signal so just skip it. */
if (lidx >= (long)sig->vector_width() || midx < 0) {
return false;
}
}
break;
}
case index_component_t::SEL_PART: {
long msb, lsb;
bool part_defined_flag;
/* bool flag = */ calculate_parts_(des, scope, msb, lsb, part_defined_flag);
/* We have an undefined index and that is out of range. */
if (!part_defined_flag) {
if (warn_ob_select) {
cerr << get_fileline() << ": warning: "
<< sig->name();
if (sig->unpacked_dimensions() > 0) cerr << "[]";
cerr << "['bx] is always outside the vector."
<< endl;
}
return false;
}
if (prefix_indices.size()+1 < sig->packed_dims().size()) {
// Here we have a slice that doesn't have enough indices
// to get to a single slice. For example:
// wire [9:0][5:1] foo
// ... foo[4:3] ...
// Make this work by finding the indexed slices and
// creating a generated slice that spans the whole
// range.
unsigned long lwid, mwid;
bool lrc, mrc;
lrc = sig->sb_to_slice(prefix_indices, lsb, lidx, lwid);
mrc = sig->sb_to_slice(prefix_indices, msb, midx, mwid);
if (!mrc || !lrc) {
cerr << get_fileline() << ": error: ";
cerr << "Part-select [" << msb << ":" << lsb;
cerr << "] exceeds the declared bounds for ";
cerr << sig->name();
if (sig->unpacked_dimensions() > 0) cerr << "[]";
cerr << "." << endl;
des->errors += 1;
return 0;
}
ivl_assert(*this, lwid == mwid);
midx += mwid - 1;
} else {
lidx = sig->sb_to_idx(prefix_indices, lsb);
midx = sig->sb_to_idx(prefix_indices, msb);
}
/* Detect reversed indices of a part select. */
if (lidx > midx) {
cerr << get_fileline() << ": error: Part select "
<< sig->name() << "[" << msb << ":"
<< lsb << "] indices reversed." << endl;
cerr << get_fileline() << ": : Did you mean "
<< sig->name() << "[" << lsb << ":"
<< msb << "]?" << endl;
des->errors += 1;
std::swap(lidx, midx);
}
/* Warn about a part select that is out of range. */
if (midx >= (long)sig->vector_width() || lidx < 0) {
cerr << get_fileline() << ": warning: Part select "
<< sig->name();
if (sig->unpacked_dimensions() > 0) {
cerr << "[]";
}
cerr << "[" << msb << ":" << lsb
<< "] is out of range." << endl;
}
/* This is completely out side the signal so just skip it. */
if (lidx >= (long)sig->vector_width() || midx < 0) {
return false;
}
break;
}
case index_component_t::SEL_BIT:
if (name_tail.index.size() > sig->unpacked_dimensions()) {
long msb;
bool bit_defined_flag;
/* bool flag = */ calculate_bits_(des, scope, msb, bit_defined_flag);
/* We have an undefined index and that is out of range. */
if (!bit_defined_flag) {
if (warn_ob_select) {
cerr << get_fileline() << ": warning: "
<< sig->name();
if (sig->unpacked_dimensions() > 0) cerr << "[]";
cerr << "['bx] is always outside the vector."
<< endl;
}
return false;
}
if (prefix_indices.size()+2 <= sig->packed_dims().size()) {
long tmp_loff;
unsigned long tmp_lwid;
bool rcl = sig->sb_to_slice(prefix_indices, msb,
tmp_loff, tmp_lwid);
if(rcl) {
midx = tmp_loff + tmp_lwid - 1;
lidx = tmp_loff;
} else {
cerr << get_fileline() << ": error: Index " << sig->name()
<< "[" << msb << "] is out of range."
<< endl;
des->errors += 1;
midx = 0;
lidx = 0;
}
} else {
midx = sig->sb_to_idx(prefix_indices, msb);
if (midx >= (long)sig->vector_width()) {
cerr << get_fileline() << ": error: Index " << sig->name()
<< "[" << msb << "] is out of range."
<< endl;
des->errors += 1;
midx = 0;
}
lidx = midx;
}
} else {
cerr << get_fileline() << ": internal error: "
<< "Bit select " << path_ << endl;
ivl_assert(*this, 0);
midx = sig->vector_width() - 1;
lidx = 0;
}
break;
}
return true;
}
/*
* This is the common code for l-value nets and bi-directional
* nets. There is very little that is different between the two cases,
* so most of the work for both is done here.
*/
NetNet* PEIdent::elaborate_lnet_common_(Design*des, NetScope*scope,
bool bidirectional_flag) const
{
ivl_assert(*this, scope);
symbol_search_results sr;
symbol_search(this, des, scope, path_.name, lexical_pos_, &sr);
if (sr.eve != 0) {
cerr << get_fileline() << ": error: named events (" << path_
<< ") cannot be l-values in continuous "
<< "assignments." << endl;
des->errors += 1;
return 0;
}
NetNet*sig = sr.net;
pform_name_t base_path = sr.path_head;
pform_name_t member_path = sr.path_tail;
if (sig == 0) {
cerr << get_fileline() << ": error: Net " << path_
<< " is not defined in this context." << endl;
if (sr.decl_after_use) {
cerr << sr.decl_after_use->get_fileline() << ": : "
"A symbol with that name was declared here. "
"Check for declaration after use." << endl;
}
des->errors += 1;
return 0;
}
if (debug_elaborate) {
cerr << get_fileline() << ": " << __func__ << ": "
<< "Found l-value path_=" << path_
<< " as sig=" << sig->name()
<< " base_path=" << base_path
<< " member_path=" << member_path
<< " unpacked_dimensions()=" << sig->unpacked_dimensions()
<< endl;
}
if (sig->get_const()) {
cerr << get_fileline() << ": error: Continuous assignment to const"
<< " signal `" << sig->name() << "` is not allowed." << endl;
des->errors++;
return nullptr;
}
// If this is SystemVerilog and the variable is not yet
// assigned by anything, then convert it to an unresolved
// wire.
if (gn_var_can_be_uwire()
&& (sig->type() == NetNet::REG)
&& (sig->peek_lref() == 0) ) {
sig->type(NetNet::UNRESOLVED_WIRE);
}
// Don't allow registers as assign l-values.
if (sig->type() == NetNet::REG) {
cerr << get_fileline() << ": error: reg " << sig->name()
<< "; cannot be driven by primitives"
<< " or continuous assignment." << endl;
des->errors += 1;
return 0;
}
// Some parts below need the tail component. This is a convenient
// reference to it.
const name_component_t&path_tail = path_.back();
// Default part select is the entire word.
unsigned midx = sig->vector_width()-1, lidx = 0;
// The default word select is the first.
long widx = 0;
// Set this to true if we calculate the word index. This is
// used to distinguish between unpacked array assignment and
// array word assignment.
bool widx_flag = false;
list<long> unpacked_indices_const;
// Detect the net is a structure and there was a method path
// detected. We have already broken the path_ into the path to
// the net, and the path of member names. For example, if the
// path_ is a.b.x.y, we have determined that a.b is a reference
// to the net, and that x.y are the member_path. So in this case
// we handle the member_path.
const netstruct_t*struct_type = 0;
if ((struct_type = sig->struct_type()) && !member_path.empty()) {
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lnet_common_: "
<< "Signal " << sig->name() << " is a structure, "
<< "try to match member path " << member_path << endl;
}
unsigned long member_off = 0;
unsigned long member_width = sig->vector_width();
// Might be an array of structs, like a.b[N].x.y. (A packed
// array.) Handle that here by taking a part select that
// reflects the array index.
if (sig->packed_dimensions() > 1) {
list<index_component_t>tmp_index = base_path.back().index;
index_component_t member_select;
member_select.sel = index_component_t::SEL_BIT;
member_select.msb = new PENumber(new verinum(member_off));
tmp_index.push_back(member_select);
NetExpr*packed_base = collapse_array_indices(des, scope, sig, tmp_index);
if (debug_elaborate) {
cerr << get_fileline() << ": " << __func__ << ": "
<< "packed_base=" << *packed_base
<< endl;
}
long tmp;
if (packed_base && eval_as_long(tmp, packed_base)) {
member_off = tmp;
member_width = struct_type->packed_width();
delete packed_base;
packed_base = 0;
}
// Only support constant dimensions here.
ivl_assert(*this, packed_base == 0);
}
// Now run through the member names, possibly nested, to take
// further part selects reflected by the member name. So for
// example, (.x.y) member x has an offset and width within the
// containing vector, and member y an offset and width within
// that.
pform_name_t use_path = member_path;
while (! use_path.empty()) {
const name_component_t member_comp = use_path.front();
const perm_string&member_name = member_comp.name;
unsigned long tmp_off;
const struct netstruct_t::member_t*member = struct_type->packed_member(member_name, tmp_off);
if(!member) {
cerr << get_fileline() << ": error: missing element " << path() << endl;
des->errors += 1;
return 0;
}
member_off += tmp_off;
member_width = member->net_type->packed_width();
if (const netstruct_t*tmp_struct = dynamic_cast<const netstruct_t*> (member->net_type)) {
struct_type = tmp_struct;
} else {
struct_type = 0;
}
use_path.pop_front();
}
// Look for part selects on the final member. For example if
// the path is a.b.x.y[3:0], the end of the member_path will
// have an index that needs to be handled.
// For now, assume there is unly a single part/bit select, and
// assume it's constant.
if (member_path.back().index.size() > 0) {
list<index_component_t>tmp_index = member_path.back().index;
if (debug_elaborate) {
cerr << get_fileline() << ": " << __func__ << ": "
<< "Process trailing bit/part select. "
<< "index.size()=" << tmp_index.size()
<< endl;
}
ivl_assert(*this, tmp_index.size() == 1);
const index_component_t&tail_sel = tmp_index.back();
ivl_assert(*this, tail_sel.sel == index_component_t::SEL_PART || tail_sel.sel == index_component_t::SEL_BIT);
long tmp_off;
unsigned long tmp_wid;
bool rc = calculate_part(this, des, scope, tail_sel, tmp_off, tmp_wid);
ivl_assert(*this, rc);
member_off += tmp_off;
member_width = tmp_wid;
}
if (debug_elaborate) {
cerr << get_fileline() << ": " << __func__ << ": "
<< "Final, calculated member " << member_path
<< " offset=" << member_off
<< " width=" << member_width
<< endl;
}
// Rewrite a member select of a packed structure as a
// part select of the base variable.
lidx = member_off;
midx = lidx + member_width - 1;
// Elaborate an expression from the packed indices and
// the member offset (into the structure) to get a
// canonical expression into the packed signal vector.
if (sig->packed_dimensions() > 1) {
list<index_component_t>tmp_index = base_path.back().index;
index_component_t member_select;
member_select.sel = index_component_t::SEL_BIT;
member_select.msb = new PENumber(new verinum(member_off));
tmp_index.push_back(member_select);
NetExpr*packed_base = collapse_array_indices(des, scope, sig, tmp_index);
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lnet_common_: "
<< "packed_base=" << *packed_base
<< ", member_off=" << member_off << endl;
}
}
} else if (gn_system_verilog() && sig->unpacked_dimensions() > 0 && path_tail.index.empty()) {
// In this case, we are doing a continuous assignment to
// an unpacked array. The NetNet representation is a
// NetNet with a pin for each array element, so there is
// nothing more needed here.
//
// This can come up from code like this:
// logic [...] data [0:3];
// assign data = ...;
// In this case, "sig" is "data", and sig->pin_count()
// is 4 to account for the unpacked size.
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lnet_common_: "
<< "Net assign to unpacked array \"" << sig->name()
<< "\" with " << sig->pin_count() << " elements." << endl;
}
} else if (sig->unpacked_dimensions() > 0) {
// Make sure there are enough indices to address an array element.
if (path_tail.index.size() < sig->unpacked_dimensions()) {
cerr << get_fileline() << ": error: Array " << path()
<< " needs " << sig->unpacked_dimensions() << " indices,"
<< " but got only " << path_tail.index.size() << ". (net)" << endl;
des->errors += 1;
return 0;
}
// Evaluate all the index expressions into an
// "unpacked_indices" array.
list<NetExpr*>unpacked_indices;
indices_flags flags;
indices_to_expressions(des, scope, this,
path_tail.index, sig->unpacked_dimensions(),
true,
flags,
unpacked_indices,
unpacked_indices_const);
if (flags.invalid) {
return 0;
} else if (flags.variable) {
cerr << get_fileline() << ": error: array '" << sig->name()
<< "' index must be a constant in this context." << endl;
des->errors += 1;
return 0;
} else if (flags.undefined) {
cerr << get_fileline() << ": warning: "
<< "ignoring undefined l-value array access "
<< sig->name() << as_indices(unpacked_indices)
<< "." << endl;
widx = -1;
widx_flag = true;
} else {
NetExpr*canon_index = 0;
ivl_assert(*this, unpacked_indices_const.size() == sig->unpacked_dimensions());
canon_index = normalize_variable_unpacked(sig, unpacked_indices_const);
if (canon_index == 0) {
cerr << get_fileline() << ": warning: "
<< "ignoring out of bounds l-value array access "
<< sig->name() << as_indices(unpacked_indices_const)
<< "." << endl;
widx = -1;
widx_flag = true;
} else {
NetEConst*canon_const = dynamic_cast<NetEConst*>(canon_index);
ivl_assert(*this, canon_const);
widx = canon_const->value().as_long();
widx_flag = true;
delete canon_index;
}
}
if (debug_elaborate)
cerr << get_fileline() << ": debug: Use [" << widx << "]"
<< " to index l-value array." << endl;
/* The array has a part/bit select at the end. */
if (path_tail.index.size() > sig->unpacked_dimensions()) {
if (sig->get_scalar()) {
cerr << get_fileline() << ": error: "
<< "can not select part of ";
if (sig->data_type() == IVL_VT_REAL) cerr << "real";
else cerr << "scalar";
cerr << " array word: " << sig->name()
<< as_indices(unpacked_indices_const) << endl;
des->errors += 1;
return 0;
}
long midx_tmp, lidx_tmp;
if (! eval_part_select_(des, scope, sig, midx_tmp, lidx_tmp))
return 0;
if (lidx_tmp < 0) {
cerr << get_fileline() << ": sorry: part selects "
"straddling the start of signal (" << path_
<< ") are not currently supported." << endl;
des->errors += 1;
return 0;
}
midx = midx_tmp;
lidx = lidx_tmp;
}
} else if (!path_tail.index.empty()) {
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_lnet_common_: "
<< "path_tail.index.size()=" << path_tail.index.size()
<< endl;
}
// There are index expressions on the name, so this is a
// bit/slice select of the name. Calculate a canonical
// part select.
if (sig->get_scalar()) {
cerr << get_fileline() << ": error: "
<< "can not select part of ";
if (sig->data_type() == IVL_VT_REAL) cerr << "real: ";
else cerr << "scalar: ";
cerr << sig->name() << endl;
des->errors += 1;
return 0;
}
long midx_tmp, lidx_tmp;
if (! eval_part_select_(des, scope, sig, midx_tmp, lidx_tmp))
return 0;
if (lidx_tmp < 0) {
cerr << get_fileline() << ": sorry: part selects "
"straddling the start of signal (" << path_
<< ") are not currently supported." << endl;
des->errors += 1;
return 0;
}
midx = midx_tmp;
lidx = lidx_tmp;
}
unsigned subnet_wid = midx-lidx+1;
/* Check if the l-value bits are double-driven. */
if (sig->type() == NetNet::UNRESOLVED_WIRE) {
ivl_assert(*this, widx_flag || (widx == 0));
long wcount = widx_flag ? 1 : sig->pin_count();
for (long idx = 0; idx < wcount; idx += 1) {
if (sig->test_and_set_part_driver(midx, lidx, widx + idx)) {
cerr << get_fileline() << ": error: ";
if (sig->coerced_to_uwire())
cerr << "Variable '";
else
cerr << "Unresolved wire '";
cerr << sig->name() << "' cannot have multiple drivers." << endl;
if (debug_elaborate) {
cerr << get_fileline() << ": : Overlap in "
<< "[" << midx << ":" << lidx << "] (canonical)"
<< ", widx=" << (widx_flag? widx : 0)
<< ", vector width=" << sig->vector_width()
<< endl;
}
des->errors += 1;
return 0;
}
}
}
if (sig->pin_count() > 1 && widx_flag) {
if (widx < 0 || widx >= (long) sig->pin_count())
return 0;
NetNet*tmp = new NetNet(scope, scope->local_symbol(),
sig->type(), sig->net_type());
tmp->set_line(*this);
tmp->local_flag(true);
connect(sig->pin(widx), tmp->pin(0));
sig = tmp;
} else if (sig->pin_count() > 1) {
// If this turns out to be an l-value unpacked array,
// then let the caller handle it. It will probably be
// converted into an array of assignments.
return sig;
}
/* If the desired l-value vector is narrower than the
signal itself, then use a NetPartSelect node to
arrange for connection to the desired bits. All this
can be skipped if the desired width matches the
original vector. */
if (subnet_wid != sig->vector_width()) {
/* If we are processing a tran or inout, then the
partselect is bi-directional. Otherwise, it is a
Part-to-Vector select. */
if (debug_elaborate)
cerr << get_fileline() << ": debug: "
<< "Elaborate lnet part select "
<< sig->name()
<< "[base=" << lidx
<< " wid=" << subnet_wid <<"]"
<< endl;
netvector_t*tmp2_vec = new netvector_t(sig->data_type(),
subnet_wid-1,0);
NetNet*subsig = new NetNet(sig->scope(),
sig->scope()->local_symbol(),
NetNet::WIRE, tmp2_vec);
subsig->local_flag(true);
subsig->set_line(*this);
if (bidirectional_flag) {
// Make a tran(VP)
NetTran*sub = new NetTran(scope, scope->local_symbol(),
sig->vector_width(),
subnet_wid, lidx);
sub->set_line(*this);
des->add_node(sub);
connect(sub->pin(0), sig->pin(0));
connect(sub->pin(1), subsig->pin(0));
} else {
NetPartSelect*sub = new NetPartSelect(sig, lidx, subnet_wid,
NetPartSelect::PV);
des->add_node(sub);
sub->set_line(*this);
connect(sub->pin(0), subsig->pin(0));
collapse_partselect_pv_to_concat(des, sig);
}
sig = subsig;
}
return sig;
}
/*
* Identifiers in continuous assignment l-values are limited to wires
* and that ilk. Detect registers and memories here and report errors.
*/
NetNet* PEIdent::elaborate_lnet(Design*des, NetScope*scope) const
{
return elaborate_lnet_common_(des, scope, false);
}
NetNet* PEIdent::elaborate_bi_net(Design*des, NetScope*scope) const
{
return elaborate_lnet_common_(des, scope, true);
}
/*
* This method is used to elaborate identifiers that are ports to a
* scope. The scope is presumed to be that of the module that has the
* port. This elaboration is done inside the module, and is only done
* to PEIdent objects. This method is used by elaboration of a module
* instantiation (PGModule::elaborate_mod_) to get NetNet objects for
* the port.
*/
NetNet* PEIdent::elaborate_subport(Design*des, NetScope*scope) const
{
ivl_assert(*this, scope->type() == NetScope::MODULE);
NetNet*sig = des->find_signal(scope, path_.name);
if (sig == 0) {
cerr << get_fileline() << ": error: no wire/reg " << path_
<< " in module " << scope_path(scope) << "." << endl;
des->errors += 1;
return 0;
}
/* Check the port_type of the signal to make sure it is really
a port, and its direction is resolved. */
switch (sig->port_type()) {
case NetNet::PINPUT:
case NetNet::POUTPUT:
case NetNet::PINOUT:
case NetNet::PREF:
break;
/* If the name matches, but the signal is not a port,
then the user declared the object but there is no
matching input/output/inout declaration. */
case NetNet::NOT_A_PORT:
cerr << get_fileline() << ": error: signal " << path_ << " in"
<< " module " << scope_path(scope) << " is not a port." << endl;
cerr << get_fileline() << ": : Are you missing an input/"
<< "output/inout declaration?" << endl;
des->errors += 1;
return 0;
/* This should not happen. A PWire can only become
PIMPLICIT if this is a UDP reg port, and the make_udp
function should turn it into an output.... I think. */
case NetNet::PIMPLICIT:
cerr << get_fileline() << ": internal error: signal " << path_
<< " in module " << scope_path(scope) << " is left as "
<< "port type PIMPLICIT." << endl;
des->errors += 1;
return 0;
}
long midx;
long lidx;
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_subport: "
<< "path_ = \"" << path_
<< "\", unpacked_dimensions=" << sig->unpacked_dimensions()
<< ", port_type()=" << sig->port_type() << endl;
}
if (sig->unpacked_dimensions() && !gn_system_verilog()) {
cerr << get_fileline() << ": error: "
<< "Ports cannot be unpacked arrays. Try enabling SystemVerilog support." << endl;
des->errors += 1;
return 0;
}
// There cannot be parts to an unpacked array, so process this
// simply as an unpacked array.
if (sig->unpacked_dimensions()) {
if (debug_elaborate) {
cerr << get_fileline() << ": PEIdent::elaborate_subport: "
<< "path_=\"" << path_
<< "\" is an unpacked array with " << sig->pin_count()
<< " elements." << endl;
}
scope->add_module_port_net(sig);
return sig;
}
/* Evaluate the part/bit select expressions, to get the part
select of the signal that attaches to the port. Also handle
range and direction checking here. */
if (! eval_part_select_(des, scope, sig, midx, lidx))
return 0;
/* If this is a part select of the entire signal (or no part
select at all) then we're done. */
if ((lidx == 0) && (midx == (long)sig->vector_width()-1)) {
scope->add_module_port_net(sig);
return sig;
}
unsigned swid = abs(midx - lidx) + 1;
ivl_assert(*this, swid > 0 && swid < sig->vector_width());
netvector_t*tmp2_vec = new netvector_t(sig->data_type(),swid-1,0);
NetNet*tmp = new NetNet(scope, scope->local_symbol(),
NetNet::WIRE, tmp2_vec);
tmp->port_type(sig->port_type());
tmp->set_line(*this);
tmp->local_flag(true);
NetNode*ps = 0;
switch (sig->port_type()) {
case NetNet::PINPUT:
ps = new NetPartSelect(sig, lidx, swid, NetPartSelect::PV);
connect(tmp->pin(0), ps->pin(0));
sig = tmp;
break;
case NetNet::POUTPUT:
ps = new NetPartSelect(sig, lidx, swid, NetPartSelect::VP);
connect(tmp->pin(0), ps->pin(0));
sig = tmp;
break;
case NetNet::PREF:
// For the purposes of module ports, treat ref ports
// just like inout ports.
case NetNet::PINOUT:
ps = new NetTran(scope, scope->local_symbol(), sig->vector_width(),
swid, lidx);
connect(sig->pin(0), ps->pin(0));
connect(tmp->pin(0), ps->pin(1));
sig = tmp;
break;
default:
ivl_assert(*this, 0);
break;
}
ps->set_line(*this);
des->add_node(ps);
scope->add_module_port_net(sig);
return sig;
}
NetNet*PEIdent::elaborate_unpacked_net(Design*des, NetScope*scope) const
{
symbol_search_results sr;
symbol_search(this, des, scope, path_, lexical_pos_, &sr);
if (!sr.net) {
cerr << get_fileline() << ": error: Net " << path_
<< " is not defined in this context." << endl;
if (sr.decl_after_use) {
cerr << sr.decl_after_use->get_fileline() << ": : "
"A symbol with that name was declared here. "
"Check for declaration after use." << endl;
}
des->errors += 1;
return nullptr;
}
const name_component_t&name_tail = path_.back();
if (!name_tail.index.empty()) {
cerr << get_fileline() << ": sorry: Array slices are not yet "
<< "supported for continuous assignment." << endl;
des->errors += 1;
return nullptr;
}
return sr.net;
}
bool PEIdent::is_collapsible_net(Design*des, NetScope*scope,
NetNet::PortType port_type) const
{
ivl_assert(*this, scope);
symbol_search_results sr;
symbol_search(this, des, scope, path_.name, lexical_pos_, &sr);
if (sr.eve != 0)
return false;
NetNet*sig = sr.net;
if (sig == 0)
return false;
ivl_assert(*this, sig);
/* If this is SystemVerilog and the variable is not yet
assigned by anything, then convert it to an unresolved
wire. */
if (gn_var_can_be_uwire() &&
(sig->type() == NetNet::REG) &&
(sig->peek_eref() == 0) &&
(port_type == NetNet::POUTPUT)) {
sig->type(NetNet::UNRESOLVED_WIRE);
}
if (sig->type() == NetNet::UNRESOLVED_WIRE && sig->pin(0).is_linked())
return false;
if (sig->type() == NetNet::REG)
return false;
return true;
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。