代码拉取完成,页面将自动刷新
同步操作将从 ananmurphy/yolo_v3_逐行注释 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import cv2
import time
import numpy as np
import core.utils as utils
import tensorflow as tf
from PIL import Image,ImageGrab
def cap_demo():
# 模型pb文件路径
pb_file = "./yolov3_coco.pb"
# 目标检测类别总数
num_classes = 80
# 输入图像的尺寸
input_size = 416
graph = tf.Graph()
return_elements = ["input/input_data:0", "pred_sbbox/concat_2:0", "pred_mbbox/concat_2:0", "pred_lbbox/concat_2:0"]
return_tensors = utils.read_pb_return_tensors(graph, pb_file, return_elements)
with tf.Session(graph=graph) as sess:
while True:
img=ImageGrab.grab()
frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
frame_size = frame.shape[:2]
image_data = utils.image_preporcess(np.copy(frame), [input_size, input_size])
image_data = image_data[np.newaxis, ...]
pred_sbbox, pred_mbbox, pred_lbbox = sess.run(
[return_tensors[1], return_tensors[2], return_tensors[3]],
feed_dict={return_tensors[0]: image_data})
pred_bbox = np.concatenate([np.reshape(pred_sbbox, (-1, 5 + num_classes)),
np.reshape(pred_mbbox, (-1, 5 + num_classes)),
np.reshape(pred_lbbox, (-1, 5 + num_classes))], axis=0)
bboxes = utils.postprocess_boxes(pred_bbox, frame_size, input_size, 0.3)
# 非极大值抑制,IOU的阈值设为0.45
bboxes = utils.nms(bboxes, 0.45, method='nms')
# 得到的结果是一张张图片
image = utils.draw_bbox(frame, bboxes)
cv2.namedWindow("result", cv2.WINDOW_AUTOSIZE)
result = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.imshow('result',result)
print("执行了")
if cv2.waitKey(1) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break
if __name__=="__main__":
cap_demo()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。