1 Star 1 Fork 42

钟龙申/FaceLabeling

forked from CV_Lab/FaceLabeling 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
face_labeling.py 26.23 KB
一键复制 编辑 原始数据 按行查看 历史
代码阿尔法 提交于 2022-07-26 16:55 . fix video mode show frame url
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769
# Face Labeling v0.2.2
# 创建人:曾逸夫
# 创建时间:2022-07-20
import argparse
import gc
import os
import sys
import time
from collections import Counter
from datetime import datetime
from pathlib import Path
import cv2
import torch
from rich.console import Console
from rich.table import Table
from util.args_yaml import argsYaml
from util.coco_json import coco_json_main
from util.log import rich_log
from util.model_opt import yolov5_model_load
from util.obj_opt import get_obj_size
from util.path_opt import increment_path
from util.time_format import time_format
from util.voc_xml import create_xml
from util.yolo_txt import create_yolo_txt
# ---------------------图片和视频输入格式---------------------
IMG_FORMATS = ["jpg", "jpeg", "png", "bmp", "tif", "webp"]
VIDEO_FORMATS = [
"mp4",
"avi",
"wmv",
"mkv",
"mov",
"gif",
"vob",
"swf",
"mpg",
"flv",
"3gp",
"3g2",]
ROOT_PATH = sys.path[0] # 根目录
FACELABELING_VERISON = "Face Labeling v0.2.2"
coco_imgs_list = [] # 图片列表(COCO)
coco_anno_list = [] # 标注列表(COCO)
categories_id = 0 # 类别ID(COCO)
color_list = [(0, 0, 255), (0, 255, 0), (181, 228, 255)]
console = Console()
def parse_args(known=False):
parser = argparse.ArgumentParser(description="Face Labeling v0.2.2")
parser.add_argument("--device", "-dev", default="0", type=str, help="cuda or cpu")
parser.add_argument("--mode", "-m", default="webcam", type=str, help="face labeling mode")
parser.add_argument("--img_dir", "-imd", default="./data/imgs", type=str, help="image dir")
parser.add_argument("--video_dir", "-vd", default="./video", type=str, help="video dir")
parser.add_argument("--model_name", "-mn", default="widerface-m", type=str, help="model name")
parser.add_argument("--imgName", "-in", default="face_test", type=str, help="image name")
parser.add_argument("--frame_saveDir", "-fsd", default="FaceFrame", type=str, help="frame save dir")
parser.add_argument("--frame_dirName", "-fdn", default="frame", type=str, help="frame dir name")
parser.add_argument(
"--nms_conf",
"-conf",
default=0.5,
type=float,
help="model NMS confidence threshold",
)
parser.add_argument("--nms_iou", "-iou", default=0.45, type=float, help="model NMS IoU threshold")
parser.add_argument("--max_detNum", "-mdn", default=1000, type=int, help="model max detect obj num")
parser.add_argument("--inference_size", "-isz", default=640, type=int, help="model inference size")
parser.add_argument("--cls_name", "-cls", default="face", type=str, help="class name")
parser.add_argument(
"--label_dnt_show",
"-lds",
action="store_true",
default=False,
help="label show",
)
parser.add_argument(
"--label_simple",
"-ls",
default="dnt",
type=str,
help="label simple, dnt or id or conf",
)
parser.add_argument(
"--label_progressBar",
"-lpb",
default="dnt",
type=str,
help="label progress bar, dnt or bar",
)
parser.add_argument(
"--refresh_yolov5",
"-ry",
action="store_true",
default=False,
help="refresh yolov5",
)
args = parser.parse_known_args()[0] if known else parser.parse_args()
return args
# 人脸检测与信息提取
def face_detect(
mode,
frame,
model,
frame_id,
face_id,
cls_names,
xyxy_list,
obj_size_style_list,
frame_savePath,
imgName,
inference_size=640,
label_dnt_show=False,
label_simple="dnt",
label_progressBar="dnt",
video_name="vide_name.mp4",
):
global coco_imgs_list, coco_anno_list, categories_id
wait_key = cv2.waitKey(20) & 0xFF # 键盘监听
xyxy_list = [] # xyxy 列表置空
obj_size_style_list = [] # 目标尺寸类型
clsName_list = [] # 类别列表
img_size = frame.shape # 帧尺寸
frame_cp = frame.copy() # 原始图片副本
results = model(frame[..., ::-1], size=inference_size) # 检测结果
# 判断tensor是否为空
is_results_null = results.xyxyn[0].shape == torch.Size([0, 6])
# 显示帧ID
cv2.putText(
frame,
f"Frame ID: {frame_id}",
(0, 40),
cv2.FONT_HERSHEY_COMPLEX,
0.6,
(0, 255, 0),
1,
)
color_draw = color_list[1]
if not is_results_null:
for result in results.xyxyn:
for i in range(len(result)):
id = int(i) # 实例ID
obj_cls_index = int(result[i][5]) # 类别索引
obj_cls = cls_names[obj_cls_index] # 类别
clsName_list.append([obj_cls_index, obj_cls])
# ------------边框坐标------------
x0 = float(result[i][:4].tolist()[0])
y0 = float(result[i][:4].tolist()[1])
x1 = float(result[i][:4].tolist()[2])
y1 = float(result[i][:4].tolist()[3])
# ------------边框实际坐标------------
x0 = int(img_size[1] * x0)
y0 = int(img_size[0] * y0)
x1 = int(img_size[1] * x1)
y1 = int(img_size[0] * y1)
xyxy_list.append([x0, y0, x1, y1]) # 边框坐标列表
obj_size = get_obj_size([x0, y0, x1, y1]) # 获取目标尺寸
# --------标签和边框颜色设置--------
if obj_size == "small":
color_draw = color_list[0]
elif obj_size == "medium":
color_draw = color_list[1]
elif obj_size == "large":
color_draw = color_list[2]
obj_size_style_list.append(obj_size) # 获取目标尺寸列表
conf = float(result[i][4]) # 置信度
fps = f"{(1000 / float(results.t[1])):.2f}" # FPS
if not label_dnt_show:
# --------标签样式--------
if label_simple == "dnt":
label_style = f"{id}-{obj_cls}:{conf:.2f}"
elif label_simple == "id":
label_style = f"{id}"
elif label_simple == "conf":
label_style = f"{conf*100:.0f}%"
# 标签背景尺寸
labelbg_size = cv2.getTextSize(label_style, cv2.FONT_HERSHEY_COMPLEX, 0.6, 1)
# 标签背景
if label_progressBar == "dnt":
cv2.rectangle(
frame,
(x0, y0),
(x0 + labelbg_size[0][0], y0 + labelbg_size[0][1]),
color_draw,
thickness=-1,
)
elif label_progressBar == "bar":
cv2.rectangle(
frame,
(x0, y0),
(x0 + int((x1 - x0) * conf), y0 + labelbg_size[0][1]),
color_draw,
thickness=-1,
)
# 标签
cv2.putText(
frame,
label_style,
(x0, y0 + labelbg_size[0][1]),
cv2.FONT_HERSHEY_COMPLEX,
0.6,
(0, 0, 0),
1,
)
# FPS
cv2.putText(
frame,
f"FPS: {fps}",
(0, 20),
cv2.FONT_HERSHEY_COMPLEX,
0.6,
(0, 255, 0),
1,
)
# 检测框
cv2.rectangle(frame, (x0, y0), (x1, y1), color_draw, 2)
# 变量回收
del id, obj_cls_index, obj_cls, x0, y0, x1, y1, conf, fps
# 人脸数量
cv2.putText(
frame,
f"Face Num: {len(xyxy_list)}",
(0, 60),
cv2.FONT_HERSHEY_COMPLEX,
0.6,
(0, 255, 0),
1,
)
# ---------------------目标尺寸类型---------------------
small_num = Counter(obj_size_style_list)["small"] # 小目标
medium_num = Counter(obj_size_style_list)["medium"] # 中目标
large_num = Counter(obj_size_style_list)["large"] # 大目标
cv2.putText(
frame,
f"small: {small_num}",
(0, 80),
cv2.FONT_HERSHEY_COMPLEX,
0.6,
(0, 255, 0),
1,
)
cv2.putText(
frame,
f"medium: {medium_num}",
(0, 100),
cv2.FONT_HERSHEY_COMPLEX,
0.6,
(0, 255, 0),
1,
)
cv2.putText(
frame,
f"large: {large_num}",
(0, 120),
cv2.FONT_HERSHEY_COMPLEX,
0.6,
(0, 255, 0),
1,
)
imgName_faceid = f"{imgName}-{face_id}" # 图片名称-FaceID
if mode == "webcam" and wait_key == ord("a"):
# 捕获视频帧
cv2.imwrite(f"{frame_savePath}/raw/{imgName_faceid}.jpg", frame_cp) # 保存原始图片
cv2.imwrite(f"{frame_savePath}/tag/{imgName_faceid}.jpg", frame) # 保存标记图片
# 创建VOC XML文件
create_xml(
f"{imgName_faceid}.jpg",
f"{frame_savePath}/voc_xml/{imgName_faceid}.jpg",
img_size,
clsName_list,
xyxy_list,
obj_size_style_list,
f"{frame_savePath}/voc_xml/{imgName_faceid}.xml",
)
create_yolo_txt(
clsName_list,
img_size,
xyxy_list,
f"{frame_savePath}/yolo_txt/{imgName_faceid}.txt",
)
# ------------加入coco图片信息和标注信息------------
coco_imgs_list.append([
face_id,
f"{imgName_faceid}.jpg",
img_size[1],
img_size[0],
f"{datetime.now():%Y-%m-%d %H:%M:%S}",])
coco_anno_list.append([
[categories_id + i for i in range(len(xyxy_list))],
face_id,
clsName_list,
xyxy_list,])
categories_id += len(xyxy_list)
face_id += 1 # 人脸ID自增
elif mode == "img":
# 捕获视频帧
cv2.imwrite(f"{frame_savePath}/raw/{imgName_faceid}.jpg", frame_cp) # 保存原始图片
cv2.imwrite(f"{frame_savePath}/tag/{imgName_faceid}.jpg", frame) # 保存标记图片
# 创建VOC XML文件
create_xml(
f"{imgName_faceid}.jpg",
f"{frame_savePath}/voc_xml/{imgName_faceid}.jpg",
img_size,
clsName_list,
xyxy_list,
obj_size_style_list,
f"{frame_savePath}/voc_xml/{imgName_faceid}.xml",
)
create_yolo_txt(
clsName_list,
img_size,
xyxy_list,
f"{frame_savePath}/yolo_txt/{imgName_faceid}.txt",
)
# ------------加入coco图片信息和标注信息------------
coco_imgs_list.append([
face_id,
f"{imgName_faceid}.jpg",
img_size[1],
img_size[0],
f"{datetime.now():%Y-%m-%d %H:%M:%S}",])
coco_anno_list.append([
[categories_id + i for i in range(len(xyxy_list))],
face_id,
clsName_list,
xyxy_list,])
categories_id += len(xyxy_list)
face_id += 1 # 人脸ID自增
elif mode == "video":
# 捕获视频帧
cv2.imwrite(f"{frame_savePath}/{video_name}/raw/{imgName_faceid}.jpg", frame_cp) # 保存原始图片
cv2.imwrite(f"{frame_savePath}/{video_name}/tag/{imgName_faceid}.jpg", frame) # 保存标记图片
# 创建VOC XML文件
create_xml(
f"{imgName_faceid}.jpg",
f"{frame_savePath}/{video_name}/voc_xml/{imgName_faceid}.jpg",
img_size,
clsName_list,
xyxy_list,
obj_size_style_list,
f"{frame_savePath}/{video_name}/voc_xml/{imgName_faceid}.xml",
)
create_yolo_txt(
clsName_list,
img_size,
xyxy_list,
f"{frame_savePath}/{video_name}/yolo_txt/{imgName_faceid}.txt",
)
# ------------加入coco图片信息和标注信息------------
coco_imgs_list.append([
face_id,
f"{imgName_faceid}.jpg",
img_size[1],
img_size[0],
f"{datetime.now():%Y-%m-%d %H:%M:%S}",])
coco_anno_list.append([
[categories_id + i for i in range(len(xyxy_list))],
face_id,
clsName_list,
xyxy_list,])
categories_id += len(xyxy_list)
face_id += 1 # 人脸ID自增
if mode == "webcam":
return frame, img_size, wait_key, face_id
elif mode == "img":
return frame, img_size, face_id
elif mode == "video":
return frame, img_size, face_id
# 智能人脸标注
def face_label(device="0",
mode="webcam",
img_dir="./data/imgs",
video_dir="./data/videos",
model_name="widerface-m",
imgName="face_test",
frame_saveDir="FaceFrame",
frame_dirName="frame",
nms_conf=0.25,
nms_iou=0.45,
max_detNum=1000,
inference_size=640,
label_dnt_show=False,
cls_name="face",
label_simple="dnt",
label_progressBar="dnt",
refresh_yolov5=False):
model, cls_names = yolov5_model_load(device, ROOT_PATH, model_name, nms_conf, nms_iou, max_detNum, cls_name,
refresh_yolov5) # 模型加载
# ----------创建帧文件----------
frame_savePath = increment_path(Path(f"{ROOT_PATH}/{frame_saveDir}") / frame_dirName, exist_ok=False) # 增量运行
frame_savePath.mkdir(parents=True, exist_ok=True) # 创建目录
if mode in ["webcam", "img"]:
# 创建原始图片目录
Path(f"{frame_savePath}/raw").mkdir(parents=True, exist_ok=True)
# 创建标记图片目录
Path(f"{frame_savePath}/tag").mkdir(parents=True, exist_ok=True)
# 创建PASCAL VOC XML目录
Path(f"{frame_savePath}/voc_xml").mkdir(parents=True, exist_ok=True)
# 创建MS COCO JSON目录
Path(f"{frame_savePath}/coco_json").mkdir(parents=True, exist_ok=True)
# 创建YOLO TXT目录
Path(f"{frame_savePath}/yolo_txt").mkdir(parents=True, exist_ok=True)
face_id = 0 # 人脸ID
frame_id = 0 # 帧ID
xyxy_list = [] # xyxy列表
obj_size_style_list = [] # 目标尺寸列表
logTime = f"{datetime.now():%Y-%m-%d %H:%M:%S}" # 日志时间
rich_log(f"{logTime}\n") # 记录日志时间
s_time = time.time() # 起始时间
console.rule(f"🔥 {FACELABELING_VERISON} 程序开始!")
if mode == "webcam":
cap = cv2.VideoCapture(0) # 连接设备
is_capOpened = cap.isOpened() # 判断设备是否开启
# 调用face webcam
if is_capOpened:
print(f"🚀 欢迎使用{FACELABELING_VERISON},摄像头连接成功!\n") # 摄像头连接成功提示
while is_capOpened:
_, frame = cap.read() # 帧读取
cv2.namedWindow(FACELABELING_VERISON) # 设置窗口
# 人脸检测与信息提取
frame, img_size, wait_key, face_id = face_detect(
mode,
frame,
model,
frame_id,
face_id,
cls_names,
xyxy_list,
obj_size_style_list,
frame_savePath,
imgName,
inference_size,
label_dnt_show,
label_simple,
label_progressBar,
)
cv2.imshow(FACELABELING_VERISON, frame) # 显示
if wait_key == ord("q"):
# 退出窗体
break
frame_id += 1 # 帧ID自增
# 变量回收
del frame, img_size
gc.collect()
coco_json_main(
cls_names,
coco_imgs_list,
coco_anno_list,
f"{frame_savePath}/coco_json/face_coco.json",
)
else:
print("摄像头连接异常!")
elif mode == "img":
# 筛选图片文件
imgName_list = [i for i in os.listdir(img_dir) if i.split(".")[-1].lower() in IMG_FORMATS]
# 调用 face images
for i in imgName_list:
frame = cv2.imread(f"{img_dir}/{i}")
# 人脸检测与信息提取
frame, img_size, face_id = face_detect(
mode,
frame,
model,
frame_id,
face_id,
cls_names,
xyxy_list,
obj_size_style_list,
frame_savePath,
imgName,
inference_size,
label_dnt_show,
label_simple,
label_progressBar,
)
print(
f"帧ID:{frame_id}|({frame_id+1},{len(imgName_list)})|{round((frame_id+1)/len(imgName_list)*100, 2)}%",
end="\r",
)
frame_id += 1 # 帧ID自增
# 变量回收
del frame, img_size
gc.collect()
print()
coco_json_main(
cls_names,
coco_imgs_list,
coco_anno_list,
f"{frame_savePath}/coco_json/face_coco.json",
)
elif mode == "video":
# 筛选图片文件
videoName_list = [i for i in os.listdir(video_dir) if i.split(".")[-1].lower() in VIDEO_FORMATS]
for i in videoName_list:
input_video = cv2.VideoCapture(f"{video_dir}/{i}")
is_capOpened = input_video.isOpened() # 判断设备是否开启
frame_width = input_video.get(3) # 帧宽度
frame_height = input_video.get(4) # 帧高度
fps = input_video.get(5) # 帧率
video_frames = int(input_video.get(7)) # 总帧数
video_name = i.replace(".", "_") # 点号取代下划线
print(f"{video_name},帧宽度:{frame_width},帧高度:{frame_height},帧率:{fps},总帧数:{video_frames}")
frame_id = 0 # 帧ID
if is_capOpened:
# 创建原始图片目录
Path(f"{frame_savePath}/{video_name}/raw").mkdir(parents=True, exist_ok=True)
# 创建标记图片目录
Path(f"{frame_savePath}/{video_name}/tag").mkdir(parents=True, exist_ok=True)
# 创建PASCAL VOC XML目录
Path(f"{frame_savePath}/{video_name}/voc_xml").mkdir(parents=True, exist_ok=True)
# 创建MS COCO JSON目录
Path(f"{frame_savePath}/{video_name}/coco_json").mkdir(parents=True, exist_ok=True)
# 创建YOLO TXT目录
Path(f"{frame_savePath}/{video_name}/yolo_txt").mkdir(parents=True, exist_ok=True)
while is_capOpened:
wait_key = cv2.waitKey(20) & 0xFF # 键盘监听
ret, frame = input_video.read()
if not ret:
# 判断空帧
break
print(
f"帧ID:{frame_id}|({frame_id+1},{video_frames})|{round(((frame_id+1)/video_frames)*100, 2)}%",
end="\r",
)
# 人脸检测与信息提取
frame, img_size, face_id = face_detect(
mode,
frame,
model,
frame_id,
face_id,
cls_names,
xyxy_list,
obj_size_style_list,
frame_savePath,
imgName,
inference_size,
label_dnt_show,
label_simple,
label_progressBar,
video_name,
)
# cv2.imshow("video", frame) # 显示
# if wait_key == ord('q'):
# # 中断视频帧保存
# break
frame_id += 1
del frame, img_size
gc.collect
print()
coco_json_main(
cls_names,
coco_imgs_list,
coco_anno_list,
f"{frame_savePath}/{video_name}/coco_json/face_coco.json",
)
input_video.release()
cv2.destroyAllWindows()
frame_save_msg = (f"共计{face_id}张人脸图片,保存至{frame_savePath}/{video_name}/raw")
frametag_save_msg = (f"共计{face_id}张人脸标记图片,保存至{frame_savePath}/{video_name}/tag")
xml_save_msg = (f"共计{face_id}个人脸xml文件,保存至{frame_savePath}/{video_name}/voc_xml")
json_save_msg = (f"共计1个人脸json文件,保存至{frame_savePath}/{video_name}/coco_json")
txt_save_msg = (f"共计{face_id}个人脸txt文件,保存至{frame_savePath}/{video_name}/yolo_txt")
rich_log(f"{frame_save_msg}\n{frametag_save_msg}\n{xml_save_msg}\n{json_save_msg}\n{txt_save_msg}\n")
# rich table
table = Table(
title=f"{FACELABELING_VERISON} 保存信息",
show_header=True,
header_style="bold #FF6363",
)
table.add_column("属性", justify="right", style="#FFAB76")
table.add_column("个数", justify="center", style="#FFFDA2")
table.add_column("保存路径", justify="left", style="#BAFFB4", no_wrap=True)
table.add_row("人脸图片", f"{face_id}", f"{frame_savePath}/{video_name}/raw")
table.add_row("人脸标记图片", f"{face_id}", f"{frame_savePath}/{video_name}/tag")
table.add_row("人脸XML文件", f"{face_id}", f"{frame_savePath}/{video_name}/voc_xml")
table.add_row("人脸JSON文件", "1", f"{frame_savePath}/{video_name}/coco_json")
table.add_row("人脸TXT文件", f"{face_id}", f"{frame_savePath}/{video_name}/yolo_txt")
console.print(table)
face_id = 0
else:
print("连接视频失败!程序退出!")
sys.exit()
else:
print("模式错误,程序退出!")
sys.exit()
# ------------------程序结束------------------
console.rule(f"🔥 {FACELABELING_VERISON} 程序开始!")
e_time = time.time() # 终止时间
total_time = e_time - s_time # 程序用时
# 格式化时间格式,便于观察
outTimeMsg = f"用时:{time_format(total_time)}"
print(outTimeMsg) # 打印用时
rich_log(f"{outTimeMsg}\n") # 记录用时
if mode in ["webcam", "img"]:
frame_save_msg = f"共计{face_id}张人脸图片,保存至{frame_savePath}/raw"
frametag_save_msg = f"共计{face_id}张人脸标记图片,保存至{frame_savePath}/tag"
xml_save_msg = f"共计{face_id}个人脸xml文件,保存至{frame_savePath}/voc_xml"
json_save_msg = f"共计1个人脸json文件,保存至{frame_savePath}/coco_json"
txt_save_msg = f"共计{face_id}个人脸txt文件,保存至{frame_savePath}/yolo_txt"
rich_log(f"{frame_save_msg}\n{frametag_save_msg}\n{xml_save_msg}\n{json_save_msg}\n{txt_save_msg}\n")
table = Table(
title=f"{FACELABELING_VERISON} 保存信息",
show_header=True,
header_style="bold #FF6363",
)
table.add_column("属性", justify="right", style="#FFAB76")
table.add_column("个数", justify="center", style="#FFFDA2")
table.add_column("保存路径", justify="left", style="#BAFFB4", no_wrap=True)
table.add_row("人脸图片", f"{face_id}", f"{frame_savePath}/raw")
table.add_row("人脸标记图片", f"{face_id}", f"{frame_savePath}/tag")
table.add_row("人脸XML文件", f"{face_id}", f"{frame_savePath}/voc_xml")
table.add_row("人脸JSON文件", "1", f"{frame_savePath}/coco_json")
table.add_row("人脸TXT文件", f"{face_id}", f"{frame_savePath}/yolo_txt")
console.print(table)
def main(args):
device = args.device
mode = args.mode
img_dir = args.img_dir
video_dir = args.video_dir
model_name = args.model_name
imgName = args.imgName
frame_saveDir = args.frame_saveDir
frame_dirName = args.frame_dirName
nms_conf = args.nms_conf
nms_iou = args.nms_iou
max_detNum = args.max_detNum
inference_size = args.inference_size
cls_name = args.cls_name
label_dnt_show = args.label_dnt_show
label_simple = args.label_simple
label_progressBar = args.label_progressBar
refresh_yolov5 = args.refresh_yolov5
argsYaml(args) # 脚本参数
face_label(
device,
mode,
img_dir,
video_dir,
model_name,
imgName,
frame_saveDir,
frame_dirName,
nms_conf,
nms_iou,
max_detNum,
inference_size,
label_dnt_show,
cls_name,
label_simple,
label_progressBar,
refresh_yolov5,
)
if __name__ == "__main__":
args = parse_args()
main(args)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/zhonglongshen/face-labeling.git
[email protected]:zhonglongshen/face-labeling.git
zhonglongshen
face-labeling
FaceLabeling
master

搜索帮助