代码拉取完成,页面将自动刷新
#
# Copyright 2017 Quantopian, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import pandas as pd
from scipy import stats
import statsmodels.api as sm
import seaborn as sns
import matplotlib.cm as cm
import matplotlib.pyplot as plt
from matplotlib.ticker import ScalarFormatter
from functools import wraps
from . import utils
from . import performance as perf
DECIMAL_TO_BPS = 10000
def customize(func):
"""
Decorator to set plotting context and axes style during function call.
"""
@wraps(func)
def call_w_context(*args, **kwargs):
set_context = kwargs.pop('set_context', True)
if set_context:
color_palette = sns.color_palette('colorblind')
with plotting_context(), axes_style(), color_palette:
sns.despine(left=True)
return func(*args, **kwargs)
else:
return func(*args, **kwargs)
return call_w_context
def plotting_context(context='notebook', font_scale=1.5, rc=None):
"""
Create alphalens default plotting style context.
Under the hood, calls and returns seaborn.plotting_context() with
some custom settings. Usually you would use in a with-context.
Parameters
----------
context : str, optional
Name of seaborn context.
font_scale : float, optional
Scale font by factor font_scale.
rc : dict, optional
Config flags.
By default, {'lines.linewidth': 1.5}
is being used and will be added to any
rc passed in, unless explicitly overriden.
Returns
-------
seaborn plotting context
Example
-------
with alphalens.plotting.plotting_context(font_scale=2):
alphalens.create_full_tear_sheet(..., set_context=False)
See also
--------
For more information, see seaborn.plotting_context().
"""
if rc is None:
rc = {}
rc_default = {'lines.linewidth': 1.5}
# Add defaults if they do not exist
for name, val in rc_default.items():
rc.setdefault(name, val)
return sns.plotting_context(context=context, font_scale=font_scale, rc=rc)
def axes_style(style='darkgrid', rc=None):
"""Create alphalens default axes style context.
Under the hood, calls and returns seaborn.axes_style() with
some custom settings. Usually you would use in a with-context.
Parameters
----------
style : str, optional
Name of seaborn style.
rc : dict, optional
Config flags.
Returns
-------
seaborn plotting context
Example
-------
with alphalens.plotting.axes_style(style='whitegrid'):
alphalens.create_full_tear_sheet(..., set_context=False)
See also
--------
For more information, see seaborn.plotting_context().
"""
if rc is None:
rc = {}
rc_default = {}
# Add defaults if they do not exist
for name, val in rc_default.items():
rc.setdefault(name, val)
return sns.axes_style(style=style, rc=rc)
def plot_returns_table(alpha_beta,
mean_ret_quantile,
mean_ret_spread_quantile):
returns_table = pd.DataFrame()
# returns_table = returns_table.append(alpha_beta)
# todo 根据pandas升级导致的兼容性需要,更改.append函数
returns_table = pd.concat([returns_table,alpha_beta])
returns_table.loc["Mean Period Wise Return Top Quantile (bps)"] = \
mean_ret_quantile.iloc[-1] * DECIMAL_TO_BPS
returns_table.loc["Mean Period Wise Return Bottom Quantile (bps)"] = \
mean_ret_quantile.iloc[0] * DECIMAL_TO_BPS
returns_table.loc["Mean Period Wise Spread (bps)"] = \
mean_ret_spread_quantile.mean() * DECIMAL_TO_BPS
print("Returns Analysis")
utils.print_table(returns_table.apply(lambda x: x.round(3)))
def plot_turnover_table(autocorrelation_data, quantile_turnover):
turnover_table = pd.DataFrame()
for period in sorted(quantile_turnover.keys()):
# for quantile, p_data in quantile_turnover[period].iteritems():
# todo 根据pandas升级带来的兼容问题,修改iteritems
for quantile, p_data in quantile_turnover[period].items():
turnover_table.loc["Quantile {} Mean Turnover ".format(quantile),
"{}D".format(period)] = p_data.mean()
auto_corr = pd.DataFrame()
# for period, p_data in autocorrelation_data.iteritems():
# todo 根据pandas升级带来的兼容问题,修改iteritems
for period, p_data in autocorrelation_data.items():
auto_corr.loc["Mean Factor Rank Autocorrelation",
"{}D".format(period)] = p_data.mean()
print("Turnover Analysis")
utils.print_table(turnover_table.apply(lambda x: x.round(3)))
utils.print_table(auto_corr.apply(lambda x: x.round(3)))
def plot_information_table(ic_data):
ic_summary_table = pd.DataFrame()
ic_summary_table["IC Mean"] = ic_data.mean()
ic_summary_table["IC Std."] = ic_data.std()
ic_summary_table["Risk-Adjusted IC"] = \
ic_data.mean() / ic_data.std()
t_stat, p_value = stats.ttest_1samp(ic_data, 0)
ic_summary_table["t-stat(IC)"] = t_stat
ic_summary_table["p-value(IC)"] = p_value
ic_summary_table["IC Skew"] = stats.skew(ic_data)
ic_summary_table["IC Kurtosis"] = stats.kurtosis(ic_data)
print("Information Analysis")
utils.print_table(ic_summary_table.apply(lambda x: x.round(3)).T)
def plot_quantile_statistics_table(factor_data):
quantile_stats = factor_data.groupby('factor_quantile') \
.agg(['min', 'max', 'mean', 'std', 'count'])['factor']
quantile_stats['count %'] = quantile_stats['count'] \
/ quantile_stats['count'].sum() * 100.
print("Quantiles Statistics")
utils.print_table(quantile_stats)
def plot_ic_ts(ic, ax=None):
"""
Plots Spearman Rank Information Coefficient and IC moving
average for a given factor.
Parameters
----------
ic : pd.DataFrame
DataFrame indexed by date, with IC for each forward return.
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
ic = ic.copy()
num_plots = len(ic.columns)
if ax is None:
f, ax = plt.subplots(num_plots, 1, figsize=(18, num_plots * 7))
ax = np.asarray([ax]).flatten()
ymin, ymax = (None, None)
# for a, (period_num, ic) in zip(ax, ic.iteritems()):
# todo 根据pandas升级带来的兼容问题,修改iteritems
for a, (period_num, ic) in zip(ax, ic.items()):
ic.plot(alpha=0.7, ax=a, lw=0.7, color='steelblue')
ic.rolling(window=22).mean().plot(
ax=a,
color='forestgreen',
lw=2,
alpha=0.8
)
a.set(ylabel='IC', xlabel="")
a.set_title(
"{} Period Forward Return Information Coefficient (IC)"
.format(period_num))
a.axhline(0.0, linestyle='-', color='black', lw=1, alpha=0.8)
a.legend(['IC', '1 month moving avg'], loc='upper right')
a.text(.05, .95, "Mean %.3f \n Std. %.3f" % (ic.mean(), ic.std()),
fontsize=16,
bbox={'facecolor': 'white', 'alpha': 1, 'pad': 5},
transform=a.transAxes,
verticalalignment='top')
curr_ymin, curr_ymax = a.get_ylim()
ymin = curr_ymin if ymin is None else min(ymin, curr_ymin)
ymax = curr_ymax if ymax is None else max(ymax, curr_ymax)
for a in ax:
a.set_ylim([ymin, ymax])
return ax
def plot_ic_hist(ic, ax=None):
"""
Plots Spearman Rank Information Coefficient histogram for a given factor.
Parameters
----------
ic : pd.DataFrame
DataFrame indexed by date, with IC for each forward return.
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
ic = ic.copy()
num_plots = len(ic.columns)
v_spaces = ((num_plots - 1) // 3) + 1
if ax is None:
f, ax = plt.subplots(v_spaces, 3, figsize=(18, v_spaces * 6))
ax = ax.flatten()
# for a, (period_num, ic) in zip(ax, ic.iteritems()):
# todo 根据pandas升级带来的兼容问题,修改iteritems
for a, (period_num, ic) in zip(ax, ic.items()):
# sns.distplot(ic.replace(np.nan, 0.), norm_hist=True, ax=a)
# todo 根据seaborn升级带来的兼容问题,修改distplot,使用histplot,两者结果一样
sns.histplot(ic.replace(np.nan, 0.), stat="density", ax=a)
a.set(title="%s Period IC" % period_num, xlabel='IC')
a.set_xlim([-1, 1])
a.text(.05, .95, "Mean %.3f \n Std. %.3f" % (ic.mean(), ic.std()),
fontsize=16,
bbox={'facecolor': 'white', 'alpha': 1, 'pad': 5},
transform=a.transAxes,
verticalalignment='top')
a.axvline(ic.mean(), color='w', linestyle='dashed', linewidth=2)
if num_plots < len(ax):
ax[-1].set_visible(False)
return ax
def plot_ic_qq(ic, theoretical_dist=stats.norm, ax=None):
"""
Plots Spearman Rank Information Coefficient "Q-Q" plot relative to
a theoretical distribution.
Parameters
----------
ic : pd.DataFrame
DataFrame indexed by date, with IC for each forward return.
theoretical_dist : scipy.stats._continuous_distns
Continuous distribution generator. scipy.stats.norm and
scipy.stats.t are popular options.
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
ic = ic.copy()
num_plots = len(ic.columns)
v_spaces = ((num_plots - 1) // 3) + 1
if ax is None:
f, ax = plt.subplots(v_spaces, 3, figsize=(18, v_spaces * 6))
ax = ax.flatten()
if isinstance(theoretical_dist, stats.norm.__class__):
dist_name = 'Normal'
elif isinstance(theoretical_dist, stats.t.__class__):
dist_name = 'T'
else:
dist_name = 'Theoretical'
# for a, (period_num, ic) in zip(ax, ic.iteritems()):
# todo 根据pandas升级带来的兼容问题,修改iteritems
for a, (period_num, ic) in zip(ax, ic.items()):
sm.qqplot(ic.replace(np.nan, 0.).values, theoretical_dist, fit=True,
line='45', ax=a)
a.set(title="{} Period IC {} Dist. Q-Q".format(
period_num, dist_name),
ylabel='Observed Quantile',
xlabel='{} Distribution Quantile'.format(dist_name))
return ax
def plot_quantile_returns_bar(mean_ret_by_q,
by_group=False,
ylim_percentiles=None,
ax=None):
"""
Plots mean period wise returns for factor quantiles.
Parameters
----------
mean_ret_by_q : pd.DataFrame
DataFrame with quantile, (group) and mean period wise return values.
by_group : bool
Disaggregated figures by group.
ylim_percentiles : tuple of integers
Percentiles of observed data to use as y limits for plot.
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
mean_ret_by_q = mean_ret_by_q.copy()
if ylim_percentiles is not None:
ymin = (np.nanpercentile(mean_ret_by_q.values,
ylim_percentiles[0]) * DECIMAL_TO_BPS)
ymax = (np.nanpercentile(mean_ret_by_q.values,
ylim_percentiles[1]) * DECIMAL_TO_BPS)
else:
ymin = None
ymax = None
if by_group:
num_group = len(
mean_ret_by_q.index.get_level_values('group').unique())
if ax is None:
v_spaces = ((num_group - 1) // 2) + 1
f, ax = plt.subplots(v_spaces, 2, sharex=False,
sharey=True, figsize=(18, 6 * v_spaces))
ax = ax.flatten()
for a, (sc, cor) in zip(ax, mean_ret_by_q.groupby(level='group')):
(cor.xs(sc, level='group')
.multiply(DECIMAL_TO_BPS)
.plot(kind='bar', title=sc, ax=a))
a.set(xlabel='', ylabel='Mean Return (bps)',
ylim=(ymin, ymax))
if num_group < len(ax):
ax[-1].set_visible(False)
return ax
else:
if ax is None:
f, ax = plt.subplots(1, 1, figsize=(18, 6))
(mean_ret_by_q.multiply(DECIMAL_TO_BPS)
.plot(kind='bar',
title="Mean Period Wise Return By Factor Quantile", ax=ax))
ax.set(xlabel='', ylabel='Mean Return (bps)',
ylim=(ymin, ymax))
return ax
def plot_quantile_returns_violin(return_by_q,
ylim_percentiles=None,
ax=None):
"""
Plots a violin box plot of period wise returns for factor quantiles.
Parameters
----------
return_by_q : pd.DataFrame - MultiIndex
DataFrame with date and quantile as rows MultiIndex,
forward return windows as columns, returns as values.
ylim_percentiles : tuple of integers
Percentiles of observed data to use as y limits for plot.
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
return_by_q = return_by_q.copy()
if ylim_percentiles is not None:
ymin = (np.nanpercentile(return_by_q.values,
ylim_percentiles[0]) * DECIMAL_TO_BPS)
ymax = (np.nanpercentile(return_by_q.values,
ylim_percentiles[1]) * DECIMAL_TO_BPS)
else:
ymin = None
ymax = None
if ax is None:
f, ax = plt.subplots(1, 1, figsize=(18, 6))
unstacked_dr = (return_by_q
.multiply(DECIMAL_TO_BPS))
unstacked_dr.columns = unstacked_dr.columns.set_names('forward_periods')
unstacked_dr = unstacked_dr.stack()
unstacked_dr.name = 'return'
unstacked_dr = unstacked_dr.reset_index()
sns.violinplot(data=unstacked_dr,
x='factor_quantile',
hue='forward_periods',
y='return',
orient='v',
cut=0,
inner='quartile',
ax=ax)
ax.set(xlabel='', ylabel='Return (bps)',
title="Period Wise Return By Factor Quantile",
ylim=(ymin, ymax))
ax.axhline(0.0, linestyle='-', color='black', lw=0.7, alpha=0.6)
return ax
def plot_mean_quantile_returns_spread_time_series(mean_returns_spread,
std_err=None,
bandwidth=1,
ax=None):
"""
Plots mean period wise returns for factor quantiles.
Parameters
----------
mean_returns_spread : pd.Series
Series with difference between quantile mean returns by period.
std_err : pd.Series
Series with standard error of difference between quantile
mean returns each period.
bandwidth : float
Width of displayed error bands in standard deviations.
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if isinstance(mean_returns_spread, pd.DataFrame):
if ax is None:
ax = [None for a in mean_returns_spread.columns]
ymin, ymax = (None, None)
# for (i, a), (name, fr_column) in zip(enumerate(ax),
# mean_returns_spread.iteritems()):
# todo 根据pandas升级带来的兼容问题,修改iteritems
for (i, a), (name, fr_column) in zip(enumerate(ax),
mean_returns_spread.items()):
stdn = None if std_err is None else std_err[name]
a = plot_mean_quantile_returns_spread_time_series(fr_column,
std_err=stdn,
ax=a)
ax[i] = a
curr_ymin, curr_ymax = a.get_ylim()
ymin = curr_ymin if ymin is None else min(ymin, curr_ymin)
ymax = curr_ymax if ymax is None else max(ymax, curr_ymax)
for a in ax:
a.set_ylim([ymin, ymax])
return ax
if mean_returns_spread.isnull().all():
return ax
periods = mean_returns_spread.name
title = ('Top Minus Bottom Quantile Mean Return ({} Period Forward Return)'
.format(periods if periods is not None else ""))
if ax is None:
f, ax = plt.subplots(figsize=(18, 6))
mean_returns_spread_bps = mean_returns_spread * DECIMAL_TO_BPS
mean_returns_spread_bps.plot(alpha=0.4, ax=ax, lw=0.7, color='forestgreen')
mean_returns_spread_bps.rolling(window=22).mean().plot(
color='orangered',
alpha=0.7,
ax=ax
)
ax.legend(['mean returns spread', '1 month moving avg'], loc='upper right')
if std_err is not None:
std_err_bps = std_err * DECIMAL_TO_BPS
upper = mean_returns_spread_bps.values + (std_err_bps * bandwidth)
lower = mean_returns_spread_bps.values - (std_err_bps * bandwidth)
ax.fill_between(mean_returns_spread.index,
lower,
upper,
alpha=0.3,
color='steelblue')
ylim = np.nanpercentile(abs(mean_returns_spread_bps.values), 95)
ax.set(ylabel='Difference In Quantile Mean Return (bps)',
xlabel='',
title=title,
ylim=(-ylim, ylim))
ax.axhline(0.0, linestyle='-', color='black', lw=1, alpha=0.8)
return ax
def plot_ic_by_group(ic_group, ax=None):
"""
Plots Spearman Rank Information Coefficient for a given factor over
provided forward returns. Separates by group.
Parameters
----------
ic_group : pd.DataFrame
group-wise mean period wise returns.
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
f, ax = plt.subplots(1, 1, figsize=(18, 6))
ic_group.plot(kind='bar', ax=ax)
ax.set(title="Information Coefficient By Group", xlabel="")
ax.set_xticklabels(ic_group.index, rotation=45)
return ax
def plot_factor_rank_auto_correlation(factor_autocorrelation,
period=1,
ax=None):
"""
Plots factor rank autocorrelation over time.
See factor_rank_autocorrelation for more details.
Parameters
----------
factor_autocorrelation : pd.Series
Rolling 1 period (defined by time_rule) autocorrelation
of factor values.
period: int, optional
Period over which the autocorrelation is calculated
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
f, ax = plt.subplots(1, 1, figsize=(18, 6))
factor_autocorrelation.plot(title='{}D Period Factor Rank Autocorrelation'
.format(period), ax=ax)
ax.set(ylabel='Autocorrelation Coefficient', xlabel='')
ax.axhline(0.0, linestyle='-', color='black', lw=1)
ax.text(.05, .95, "Mean %.3f" % factor_autocorrelation.mean(),
fontsize=16,
bbox={'facecolor': 'white', 'alpha': 1, 'pad': 5},
transform=ax.transAxes,
verticalalignment='top')
return ax
def plot_top_bottom_quantile_turnover(quantile_turnover, period=1, ax=None):
"""
Plots period wise top and bottom quantile factor turnover.
Parameters
----------
quantile_turnover: pd.Dataframe
Quantile turnover (each DataFrame column a quantile).
period: int, optional
Period over which to calculate the turnover.
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
f, ax = plt.subplots(1, 1, figsize=(18, 6))
max_quantile = quantile_turnover.columns.max()
min_quantile = quantile_turnover.columns.min()
turnover = pd.DataFrame()
turnover['top quantile turnover'] = quantile_turnover[max_quantile]
turnover['bottom quantile turnover'] = quantile_turnover[min_quantile]
turnover.plot(title='{}D Period Top and Bottom Quantile Turnover'
.format(period), ax=ax, alpha=0.6, lw=0.8)
ax.set(ylabel='Proportion Of Names New To Quantile', xlabel="")
return ax
def plot_monthly_ic_heatmap(mean_monthly_ic, ax=None):
"""
Plots a heatmap of the information coefficient or returns by month.
Parameters
----------
mean_monthly_ic : pd.DataFrame
The mean monthly IC for N periods forward.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
mean_monthly_ic = mean_monthly_ic.copy()
num_plots = len(mean_monthly_ic.columns)
v_spaces = ((num_plots - 1) // 3) + 1
if ax is None:
f, ax = plt.subplots(v_spaces, 3, figsize=(18, v_spaces * 6))
ax = ax.flatten()
new_index_year = []
new_index_month = []
for date in mean_monthly_ic.index:
new_index_year.append(date.year)
new_index_month.append(date.month)
mean_monthly_ic.index = pd.MultiIndex.from_arrays(
[new_index_year, new_index_month],
names=["year", "month"])
# for a, (periods_num, ic) in zip(ax, mean_monthly_ic.iteritems()):
# todo 根据pandas升级带来的兼容问题,修改iteritems
for a, (periods_num, ic) in zip(ax, mean_monthly_ic.items()):
sns.heatmap(
ic.unstack(),
annot=True,
alpha=1.0,
center=0.0,
annot_kws={"size": 7},
linewidths=0.01,
linecolor='white',
cmap=cm.coolwarm_r,
cbar=False,
ax=a)
a.set(ylabel='', xlabel='')
a.set_title("Monthly Mean {} Period IC".format(periods_num))
if num_plots < len(ax):
ax[-1].set_visible(False)
return ax
def plot_cumulative_returns(factor_returns,
period,
freq=None,
title=None,
ax=None):
"""
Plots the cumulative returns of the returns series passed in.
Parameters
----------
factor_returns : pd.Series
Period wise returns of dollar neutral portfolio weighted by factor
value.
period : pandas.Timedelta or string
Length of period for which the returns are computed (e.g. 1 day)
if 'period' is a string it must follow pandas.Timedelta constructor
format (e.g. '1 days', '1D', '30m', '3h', '1D1h', etc)
freq : pandas DateOffset
Used to specify a particular trading calendar e.g. BusinessDay or Day
Usually this is inferred from utils.infer_trading_calendar, which is
called by either get_clean_factor_and_forward_returns or
compute_forward_returns
title: string, optional
Custom title
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
f, ax = plt.subplots(1, 1, figsize=(18, 6))
factor_returns = perf.cumulative_returns(factor_returns)
factor_returns.plot(ax=ax, lw=3, color='forestgreen', alpha=0.6)
ax.set(ylabel='Cumulative Returns',
title=("Portfolio Cumulative Return ({} Fwd Period)".format(period)
if title is None else title),
xlabel='')
ax.axhline(1.0, linestyle='-', color='black', lw=1)
return ax
def plot_cumulative_returns_by_quantile(quantile_returns,
period,
freq=None,
ax=None):
"""
Plots the cumulative returns of various factor quantiles.
Parameters
----------
quantile_returns : pd.DataFrame
Returns by factor quantile
period : pandas.Timedelta or string
Length of period for which the returns are computed (e.g. 1 day)
if 'period' is a string it must follow pandas.Timedelta constructor
format (e.g. '1 days', '1D', '30m', '3h', '1D1h', etc)
freq : pandas DateOffset
Used to specify a particular trading calendar e.g. BusinessDay or Day
Usually this is inferred from utils.infer_trading_calendar, which is
called by either get_clean_factor_and_forward_returns or
compute_forward_returns
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
"""
if ax is None:
f, ax = plt.subplots(1, 1, figsize=(18, 6))
ret_wide = quantile_returns.unstack('factor_quantile')
cum_ret = ret_wide.apply(perf.cumulative_returns)
cum_ret = cum_ret.loc[:, ::-1] # we want negative quantiles as 'red'
cum_ret.plot(lw=2, ax=ax, cmap=cm.coolwarm)
ax.legend()
ymin, ymax = cum_ret.min().min(), cum_ret.max().max()
ax.set(ylabel='Log Cumulative Returns',
title='''Cumulative Return by Quantile
({} Period Forward Return)'''.format(period),
xlabel='',
yscale='symlog',
yticks=np.linspace(ymin, ymax, 5),
ylim=(ymin, ymax))
ax.yaxis.set_major_formatter(ScalarFormatter())
ax.axhline(1.0, linestyle='-', color='black', lw=1)
return ax
def plot_quantile_average_cumulative_return(avg_cumulative_returns,
by_quantile=False,
std_bar=False,
title=None,
ax=None):
"""
Plots sector-wise mean daily returns for factor quantiles
across provided forward price movement columns.
Parameters
----------
avg_cumulative_returns: pd.Dataframe
The format is the one returned by
performance.average_cumulative_return_by_quantile
by_quantile : boolean, optional
Disaggregated figures by quantile (useful to clearly see std dev bars)
std_bar : boolean, optional
Plot standard deviation plot
title: string, optional
Custom title
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
"""
avg_cumulative_returns = avg_cumulative_returns.multiply(DECIMAL_TO_BPS)
quantiles = len(avg_cumulative_returns.index.levels[0].unique())
palette = [cm.coolwarm(i) for i in np.linspace(0, 1, quantiles)]
palette = palette[::-1] # we want negative quantiles as 'red'
if by_quantile:
if ax is None:
v_spaces = ((quantiles - 1) // 2) + 1
f, ax = plt.subplots(v_spaces, 2, sharex=False,
sharey=False, figsize=(18, 6 * v_spaces))
ax = ax.flatten()
for i, (quantile, q_ret) in enumerate(avg_cumulative_returns
.groupby(level='factor_quantile')
):
mean = q_ret.loc[(quantile, 'mean')]
mean.name = 'Quantile ' + str(quantile)
mean.plot(ax=ax[i], color=palette[i])
ax[i].set_ylabel('Mean Return (bps)')
if std_bar:
std = q_ret.loc[(quantile, 'std')]
ax[i].errorbar(std.index, mean, yerr=std,
fmt='none', ecolor=palette[i], label='none')
ax[i].axvline(x=0, color='k', linestyle='--')
ax[i].legend()
i += 1
else:
if ax is None:
f, ax = plt.subplots(1, 1, figsize=(18, 6))
for i, (quantile, q_ret) in enumerate(avg_cumulative_returns
.groupby(level='factor_quantile')
):
mean = q_ret.loc[(quantile, 'mean')]
mean.name = 'Quantile ' + str(quantile)
mean.plot(ax=ax, color=palette[i])
if std_bar:
std = q_ret.loc[(quantile, 'std')]
ax.errorbar(std.index, mean, yerr=std,
fmt='none', ecolor=palette[i], label='none')
i += 1
ax.axvline(x=0, color='k', linestyle='--')
ax.legend()
ax.set(ylabel='Mean Return (bps)',
title=("Average Cumulative Returns by Quantile"
if title is None else title),
xlabel='Periods')
return ax
def plot_events_distribution(events, num_bars=50, ax=None):
"""
Plots the distribution of events in time.
Parameters
----------
events : pd.Series
A pd.Series whose index contains at least 'date' level.
num_bars : integer, optional
Number of bars to plot
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
"""
if ax is None:
f, ax = plt.subplots(1, 1, figsize=(18, 6))
start = events.index.get_level_values('date').min()
end = events.index.get_level_values('date').max()
group_interval = (end - start) / num_bars
grouper = pd.Grouper(level='date', freq=group_interval)
events.groupby(grouper).count().plot(kind="bar", grid=False, ax=ax)
ax.set(ylabel='Number of events',
title='Distribution of events in time',
xlabel='Date')
return ax
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。