1 Star 0 Fork 101

王壮/车辆检测计数+车牌定位+车牌识别的融合技术

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
yolo.py 16.78 KB
一键复制 编辑 原始数据 按行查看 历史
#-------------------------------------#
# 创建YOLO类
#-------------------------------------#
import colorsys
import os
import time
import numpy as np
import torch
import torch.nn as nn
from PIL import Image, ImageDraw, ImageFont
from nets.yolo4 import YoloBody
from utils.utils_1 import (DecodeBox, letterbox_image, non_max_suppression,
yolo_correct_boxes)
#--------------------------------------------#
# 使用自己训练好的模型预测需要修改2个参数
# model_path和classes_path都需要修改!
# 如果出现shape不匹配,一定要注意
# 训练时的model_path和classes_path参数的修改
#--------------------------------------------#
class YOLO(object):
_defaults = {
"model_path" : 'model_data/yolo4_weights.pth',
"anchors_path" : 'model_data/yolo_anchors.txt',
"classes_path" : 'model_data/coco_classes.txt',
"model_image_size" : (416, 416, 3),
"confidence" : 0.5,
"iou" : 0.3,
"cuda" : torch.cuda.is_available(),
#---------------------------------------------------------------------#
# 该变量用于控制是否使用letterbox_image对输入图像进行不失真的resize,
# 在多次测试后,发现关闭letterbox_image直接resize的效果更好
#---------------------------------------------------------------------#
"letterbox_image" : False,
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
#---------------------------------------------------#
# 初始化YOLO
#---------------------------------------------------#
def __init__(self, **kwargs):
self.__dict__.update(self._defaults)
self.class_names = self._get_class()
self.anchors = self._get_anchors()
self.generate()
#---------------------------------------------------#
# 获得所有的分类
#---------------------------------------------------#
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
#---------------------------------------------------#
# 获得所有的先验框
#---------------------------------------------------#
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape([-1, 3, 2])[::-1,:,:]
#---------------------------------------------------#
# 生成模型
#---------------------------------------------------#
def generate(self):
#---------------------------------------------------#
# 建立yolov4模型
#---------------------------------------------------#
self.net = YoloBody(len(self.anchors[0]), len(self.class_names)).eval()
#---------------------------------------------------#
# 载入yolov4模型的权重
#---------------------------------------------------#
print('Loading weights into state dict...')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
state_dict = torch.load(self.model_path, map_location=device)
self.net.load_state_dict(state_dict)
print('Finished!')
print(self.cuda)
if self.cuda:
self.net = nn.DataParallel(self.net)
self.net = self.net.cuda()
#---------------------------------------------------#
# 建立三个特征层解码用的工具
#---------------------------------------------------#
self.yolo_decodes = []
for i in range(3):
self.yolo_decodes.append(DecodeBox(self.anchors[i], len(self.class_names), (self.model_image_size[1], self.model_image_size[0])))
print('{} model, anchors, and classes loaded.'.format(self.model_path))
# 画框设置不同的颜色
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
#---------------------------------------------------#
# 检测图片
#---------------------------------------------------#
def detect_image(self, image):
#---------------------------------------------------------#
# 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
#---------------------------------------------------------#
image = image.convert('RGB')
image_shape = np.array(np.shape(image)[0:2])
#---------------------------------------------------------#
# 给图像增加灰条,实现不失真的resize
# 也可以直接resize进行识别
#---------------------------------------------------------#
if self.letterbox_image:
crop_img = np.array(letterbox_image(image, (self.model_image_size[1],self.model_image_size[0])))
else:
crop_img = image.resize((self.model_image_size[1],self.model_image_size[0]), Image.BICUBIC)
photo = np.array(crop_img,dtype = np.float32) / 255.0
photo = np.transpose(photo, (2, 0, 1))
#---------------------------------------------------------#
# 添加上batch_size维度
#---------------------------------------------------------#
images = [photo]
with torch.no_grad():
images = torch.from_numpy(np.asarray(images))
if self.cuda:
images = images.cuda()
#---------------------------------------------------------#
# 将图像输入网络当中进行预测!
#---------------------------------------------------------#
outputs = self.net(images)
output_list = []
for i in range(3):
output_list.append(self.yolo_decodes[i](outputs[i]))
#---------------------------------------------------------#
# 将预测框进行堆叠,然后进行非极大抑制
#---------------------------------------------------------#
output = torch.cat(output_list, 1)
batch_detections = non_max_suppression(output, len(self.class_names),
conf_thres=self.confidence,
nms_thres=self.iou)
#---------------------------------------------------------#
# 如果没有检测出物体,返回原图
#---------------------------------------------------------#
try:
batch_detections = batch_detections[0].cpu().numpy()
except:
return image
#---------------------------------------------------------#
# 对预测框进行得分筛选
#---------------------------------------------------------#
top_index = batch_detections[:,4] * batch_detections[:,5] > self.confidence
top_conf = batch_detections[top_index,4]*batch_detections[top_index,5]
top_label = np.array(batch_detections[top_index,-1],np.int32)
top_bboxes = np.array(batch_detections[top_index,:4])
top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(top_bboxes[:,0],-1),np.expand_dims(top_bboxes[:,1],-1),np.expand_dims(top_bboxes[:,2],-1),np.expand_dims(top_bboxes[:,3],-1)
#-----------------------------------------------------------------#
# 在图像传入网络预测前会进行letterbox_image给图像周围添加灰条
# 因此生成的top_bboxes是相对于有灰条的图像的
# 我们需要对其进行修改,去除灰条的部分。
#-----------------------------------------------------------------#
if self.letterbox_image:
boxes = yolo_correct_boxes(top_ymin,top_xmin,top_ymax,top_xmax,np.array([self.model_image_size[0],self.model_image_size[1]]),image_shape)
else:
top_xmin = top_xmin / self.model_image_size[1] * image_shape[1]
top_ymin = top_ymin / self.model_image_size[0] * image_shape[0]
top_xmax = top_xmax / self.model_image_size[1] * image_shape[1]
top_ymax = top_ymax / self.model_image_size[0] * image_shape[0]
boxes = np.concatenate([top_ymin,top_xmin,top_ymax,top_xmax], axis=-1)
font = ImageFont.truetype(font='model_data/simhei.ttf',size=np.floor(3e-2 * np.shape(image)[1] + 0.5).astype('int32'))
thickness = max((np.shape(image)[0] + np.shape(image)[1]) // self.model_image_size[0], 1)
Com=0
for i, c in enumerate(top_label):
predicted_class = self.class_names[c]
score = top_conf[i]
#计数部分
if predicted_class == 'truck' : #计数
Com = Com + 1 #计数
#计数部分
top, left, bottom, right = boxes[i]
top = top - 5
left = left - 5
bottom = bottom + 5
right = right + 5
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(np.shape(image)[0], np.floor(bottom + 0.5).astype('int32'))
right = min(np.shape(image)[1], np.floor(right + 0.5).astype('int32'))
# 画框框
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
label = label.encode('utf-8')
print(label, top, left, bottom, right)
# 计数量
# 申明计数变量
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[self.class_names.index(predicted_class)])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[self.class_names.index(predicted_class)])
draw.text(text_origin, str(label,'UTF-8'), fill=(128,0, 128), font=font)
#画计数
ft = ImageFont.truetype("C:\WINDOWS\Fonts\Arial.TTF", 40)
fn = ImageFont.truetype(font='model_data/simhei.ttf',size=40)
draw.text((35, 35), "Track_count:", fill ="black", font = ft) #画计数
draw.text((280, 35), str(Com), fill ="red", font = fn) #画计数
# draw.text((5, 5), str(Com), font = font, align ="left") #画计数
# draw.text((30,400), u"Python图像处理库PIL从入门到精通",font = ft, fill = 'yellow')
# 计数量
# del draw JMW注释的 删除图片 预测图片用的如果用“video模式就需要del draw 一帧一帧看否则可能就是静止的”
return image
def get_FPS(self, image, test_interval):
# 调整图片使其符合输入要求
image_shape = np.array(np.shape(image)[0:2])
#---------------------------------------------------------#
# 给图像增加灰条,实现不失真的resize
# 也可以直接resize进行识别
#---------------------------------------------------------#
if self.letterbox_image:
crop_img = np.array(letterbox_image(image, (self.model_image_size[1],self.model_image_size[0])))
else:
crop_img = image.convert('RGB')
crop_img = crop_img.resize((self.model_image_size[1],self.model_image_size[0]), Image.BICUBIC)
photo = np.array(crop_img,dtype = np.float32) / 255.0
photo = np.transpose(photo, (2, 0, 1))
#---------------------------------------------------------#
# 添加上batch_size维度
#---------------------------------------------------------#
images = [photo]
with torch.no_grad():
images = torch.from_numpy(np.asarray(images))
if self.cuda:
images = images.cuda()
outputs = self.net(images)
output_list = []
for i in range(3):
output_list.append(self.yolo_decodes[i](outputs[i]))
output = torch.cat(output_list, 1)
batch_detections = non_max_suppression(output, len(self.class_names),
conf_thres=self.confidence,
nms_thres=self.iou)
try:
batch_detections = batch_detections[0].cpu().numpy()
top_index = batch_detections[:,4]*batch_detections[:,5] > self.confidence
top_conf = batch_detections[top_index,4]*batch_detections[top_index,5]
top_label = np.array(batch_detections[top_index,-1],np.int32)
top_bboxes = np.array(batch_detections[top_index,:4])
top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(top_bboxes[:,0],-1),np.expand_dims(top_bboxes[:,1],-1),np.expand_dims(top_bboxes[:,2],-1),np.expand_dims(top_bboxes[:,3],-1)
if self.letterbox_image:
boxes = yolo_correct_boxes(top_ymin,top_xmin,top_ymax,top_xmax,np.array([self.model_image_size[0],self.model_image_size[1]]),image_shape)
else:
top_xmin = top_xmin / self.model_image_size[1] * image_shape[1]
top_ymin = top_ymin / self.model_image_size[0] * image_shape[0]
top_xmax = top_xmax / self.model_image_size[1] * image_shape[1]
top_ymax = top_ymax / self.model_image_size[0] * image_shape[0]
boxes = np.concatenate([top_ymin,top_xmin,top_ymax,top_xmax], axis=-1)
except:
pass
t1 = time.time()
for _ in range(test_interval):
with torch.no_grad():
outputs = self.net(images)
output_list = []
for i in range(3):
output_list.append(self.yolo_decodes[i](outputs[i]))
output = torch.cat(output_list, 1)
batch_detections = non_max_suppression(output, len(self.class_names),
conf_thres=self.confidence,
nms_thres=self.iou)
try:
batch_detections = batch_detections[0].cpu().numpy()
top_index = batch_detections[:,4]*batch_detections[:,5] > self.confidence
top_conf = batch_detections[top_index,4]*batch_detections[top_index,5]
top_label = np.array(batch_detections[top_index,-1],np.int32)
top_bboxes = np.array(batch_detections[top_index,:4])
top_xmin, top_ymin, top_xmax, top_ymax = np.expand_dims(top_bboxes[:,0],-1),np.expand_dims(top_bboxes[:,1],-1),np.expand_dims(top_bboxes[:,2],-1),np.expand_dims(top_bboxes[:,3],-1)
if self.letterbox_image:
boxes = yolo_correct_boxes(top_ymin,top_xmin,top_ymax,top_xmax,np.array([self.model_image_size[0],self.model_image_size[1]]),image_shape)
else:
top_xmin = top_xmin / self.model_image_size[1] * image_shape[1]
top_ymin = top_ymin / self.model_image_size[0] * image_shape[0]
top_xmax = top_xmax / self.model_image_size[1] * image_shape[1]
top_ymax = top_ymax / self.model_image_size[0] * image_shape[0]
boxes = np.concatenate([top_ymin,top_xmin,top_ymax,top_xmax], axis=-1)
except:
pass
t2 = time.time()
tact_time = (t2 - t1) / test_interval
return tact_time
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/yuanfangshangya/car.git
[email protected]:yuanfangshangya/car.git
yuanfangshangya
car
车辆检测计数+车牌定位+车牌识别的融合技术
master

搜索帮助