1 Star 0 Fork 432

杨渊博/machinelearning_notebook

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
2_linear_regression_2.py 1.60 KB
一键复制 编辑 原始数据 按行查看 历史
布树辉 提交于 2018-10-02 22:15 +08:00 . Add pytorch logistic regression codes
import torch
from torch import nn, optim
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
torch.manual_seed(2018)
# model's real-parameters
w_target = 3
b_target = 10
# generate data
n_data = 100
x_train = np.random.rand(n_data, 1)*20 - 10
y_train = w_target*x_train + b_target + (np.random.randn(n_data, 1)*10-5.0)
# draw the data
plt.plot(x_train, y_train, 'bo')
plt.show()
# convert to tensor
x_train = torch.from_numpy(x_train).float()
y_train = torch.from_numpy(y_train).float()
# Linear Regression Model
class LinearRegression(nn.Module):
def __init__(self):
super(LinearRegression, self).__init__()
self.linear = nn.Linear(1, 1) # input and output is 1 dimension
def forward(self, x):
out = self.linear(x)
return out
# create the model
model = LinearRegression()
# 定义loss和优化函数
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=1e-4)
# 开始训练
num_epochs = 1000
for epoch in range(num_epochs):
inputs = Variable(x_train)
target = Variable(y_train)
# forward
out = model(inputs)
loss = criterion(out, target)
# backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 20 == 0:
print('Epoch[{}/{}], loss: {:.6f}'
.format(epoch+1, num_epochs, loss.data[0]))
# do evaluation & plot
model.eval()
predict = model(Variable(x_train))
predict = predict.data.numpy()
plt.plot(x_train.numpy(), y_train.numpy(), 'bo', label='Real')
plt.plot(x_train.numpy(), predict, 'ro', label='Estimated')
plt.legend()
plt.show()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/yang-yuanbo-777/machinelearning_notebook.git
git@gitee.com:yang-yuanbo-777/machinelearning_notebook.git
yang-yuanbo-777
machinelearning_notebook
machinelearning_notebook
master

搜索帮助

371d5123 14472233 46e8bd33 14472233