代码拉取完成,页面将自动刷新
同步操作将从 飞行器智能感知与控制/machinelearning_notebook 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import torch
import numpy as np
from torch import nn
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
#%matplotlib inline
np.random.seed(1)
m = 400 # 样本数量
N = int(m/2) # 每一类的点的个数
D = 2 # 维度
x = np.zeros((m, D))
y = np.zeros((m, 1), dtype='uint8') # label 向量, 0 表示红色, 1 表示蓝色
a = 4
# 生成两类数据
for j in range(2):
ix = range(N*j,N*(j+1))
t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
x[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
y[ix] = j
x = torch.from_numpy(x).float()
y = torch.from_numpy(y).float()
# 定义两层神经网络的参数
w1 = nn.Parameter(torch.randn(2, 4) * 0.01) # 输入维度为2, 隐藏层神经元个数4
b1 = nn.Parameter(torch.zeros(4))
w2 = nn.Parameter(torch.randn(4, 1) * 0.01) # 隐层神经元为4, 输出单元为1
b2 = nn.Parameter(torch.zeros(1))
def mlp_network(x):
x1 = torch.mm(x, w1) + b1
x1 = F.tanh(x1) # 使用 PyTorch 自带的 tanh 激活函数
x2 = torch.mm(x1, w2) + b2
return x2
# 定义优化器和损失函数
optimizer = torch.optim.SGD([w1, w2, b1, b2], 1.)
criterion = nn.BCEWithLogitsLoss()
for e in range(10000):
# 正向计算
out = mlp_network(Variable(x))
# 计算误差
loss = criterion(out, Variable(y))
# 计算梯度并更新权重
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (e + 1) % 1000 == 0:
print('epoch: {}, loss: {}'.format(e+1, loss.item()))
def plot_decision_boundary(model, x, y):
# Set min and max values and give it some padding
x_min, x_max = x[:, 0].min() - 1, x[:, 0].max() + 1
y_min, y_max = x[:, 1].min() - 1, x[:, 1].max() + 1
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min,y_max, h))
# Predict the function value for the whole grid .c_ 按行连接两个矩阵,左右相加。
Z = model(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.ylabel("x2")
plt.xlabel("x1")
for i in range(m):
if y[i] == 0:
plt.scatter(x[i, 0], x[i, 1], marker='8',c=0, s=40, cmap=plt.cm.Spectral)
else:
plt.scatter(x[i, 0], x[i, 1], marker='^',c=1, s=40)
def plot_network(x):
x = Variable(torch.from_numpy(x).float())
x1 = torch.mm(x, w1) + b1
x1 = F.tanh(x1)
x2 = torch.mm(x1, w2) + b2
out = F.sigmoid(x2)
out = (out > 0.5) * 1
return out.data.numpy()
plot_decision_boundary(lambda x: plot_network(x), x.numpy(), y.numpy())
plt.title('2层神经网络')
plt.savefig('fig-res-8.4.pdf')
plt.show()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。