1 Star 0 Fork 21

Admin/Multi-UAV Task Assignment Benchmark

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
evaluate.py 10.52 KB
一键复制 编辑 原始数据 按行查看 历史
肖昆 提交于 2020-09-01 20:44 +08:00 . add readme
import numpy as np
import matplotlib.pyplot as plt
import random
import pandas as pd
import copy
from multiprocessing import Pool
from ga import GA
from aco import ACO
from pso import PSO
class Env():
def __init__(self, vehicle_num, target_num, map_size, visualized=True, time_cost=None, repeat_cost=None):
self.vehicles_position = np.zeros(vehicle_num,dtype=np.int32)
self.vehicles_speed = np.zeros(vehicle_num,dtype=np.int32)
self.targets = np.zeros(shape=(target_num+1,4),dtype=np.int32)
if vehicle_num==5:
self.size='small'
if vehicle_num==10:
self.size='medium'
if vehicle_num==15:
self.size='large'
self.map_size = map_size
self.speed_range = [10, 15, 30]
#self.time_lim = 1e6
self.time_lim = self.map_size / self.speed_range[1]
self.vehicles_lefttime = np.ones(vehicle_num,dtype=np.float32) * self.time_lim
self.distant_mat = np.zeros((target_num+1,target_num+1),dtype=np.float32)
self.total_reward = 0
self.reward = 0
self.visualized = visualized
self.time = 0
self.time_cost = time_cost
self.repeat_cost = repeat_cost
self.end = False
self.assignment = [[] for i in range(vehicle_num)]
self.task_generator()
def task_generator(self):
for i in range(self.vehicles_speed.shape[0]):
choose = random.randint(0,2)
self.vehicles_speed[i] = self.speed_range[choose]
for i in range(self.targets.shape[0]-1):
self.targets[i+1,0] = random.randint(1,self.map_size) - 0.5*self.map_size # x position
self.targets[i+1,1] = random.randint(1,self.map_size) - 0.5*self.map_size # y position
self.targets[i+1,2] = random.randint(1,10) # reward
self.targets[i+1,3] = random.randint(5,30) # time consumption to finish the mission
for i in range(self.targets.shape[0]):
for j in range(self.targets.shape[0]):
self.distant_mat[i,j] = np.linalg.norm(self.targets[i,:2]-self.targets[j,:2])
self.targets_value = copy.deepcopy((self.targets[:,2]))
def step(self, action):
count = 0
for j in range(len(action)):
k = action[j]
delta_time = self.distant_mat[self.vehicles_position[j],k] / self.vehicles_speed[j] + self.targets[k,3]
self.vehicles_lefttime[j] = self.vehicles_lefttime[j] - delta_time
if self.vehicles_lefttime[j] < 0:
count = count + 1
continue
else:
if k == 0:
self.reward = - self.repeat_cost
else:
self.reward = self.targets[k,2] - delta_time * self.time_cost + self.targets[k,2]
if self.targets[k,2] == 0:
self.reward = self.reward - self.repeat_cost
self.vehicles_position[j] = k
self.targets[k,2] = 0
self.total_reward = self.total_reward + self.reward
self.assignment[j].append(action)
if count == len(action):
self.end = True
def run(self, assignment, algorithm, play, rond):
self.assignment = assignment
self.algorithm = algorithm
self.play = play
self.rond = rond
self.get_total_reward()
if self.visualized:
self.visualize()
def reset(self):
self.vehicles_position = np.zeros(self.vehicles_position.shape[0],dtype=np.int32)
self.vehicles_lefttime = np.ones(self.vehicles_position.shape[0],dtype=np.float32) * self.time_lim
self.targets[:,2] = self.targets_value
self.total_reward = 0
self.reward = 0
self.end = False
def get_total_reward(self):
for i in range(len(self.assignment)):
speed = self.vehicles_speed[i]
for j in range(len(self.assignment[i])):
position = self.targets[self.assignment[i][j],:4]
self.total_reward = self.total_reward + position[2]
if j == 0:
self.vehicles_lefttime[i] = self.vehicles_lefttime[i] - np.linalg.norm(position[:2]) / speed - position[3]
else:
self.vehicles_lefttime[i] = self.vehicles_lefttime[i] - np.linalg.norm(position[:2]-position_last[:2]) / speed - position[3]
position_last = position
if self.vehicles_lefttime[i] > self.time_lim:
self.end = True
break
if self.end:
self.total_reward = 0
break
def visualize(self):
if self.assignment == None:
plt.scatter(x=0,y=0,s=200,c='k')
plt.scatter(x=self.targets[1:,0],y=self.targets[1:,1],s=self.targets[1:,2]*10,c='r')
plt.title('Target distribution')
plt.savefig('task_pic/'+self.size+'/'+self.algorithm+ "-%d-%d.png" % (self.play,self.rond))
plt.cla()
else:
plt.title('Task assignment by '+self.algorithm +', total reward : '+str(self.total_reward))
plt.scatter(x=0,y=0,s=200,c='k')
plt.scatter(x=self.targets[1:,0],y=self.targets[1:,1],s=self.targets[1:,2]*10,c='r')
for i in range(len(self.assignment)):
trajectory = np.array([[0,0,20]])
for j in range(len(self.assignment[i])):
position = self.targets[self.assignment[i][j],:3]
trajectory = np.insert(trajectory,j+1,values=position,axis=0)
plt.scatter(x=trajectory[1:,0],y=trajectory[1:,1],s=trajectory[1:,2]*10,c='b')
plt.plot(trajectory[:,0], trajectory[:,1])
plt.savefig('task_pic/'+self.size+'/'+self.algorithm+ "-%d-%d.png" % (self.play,self.rond))
plt.cla()
def evaluate(vehicle_num, target_num, map_size):
if vehicle_num==5:
size='small'
if vehicle_num==10:
size='medium'
if vehicle_num==15:
size='large'
re_ga=[[] for i in range(10)]
re_aco=[[] for i in range(10)]
re_pso=[[] for i in range(10)]
for i in range(10):
env = Env(vehicle_num,target_num,map_size,visualized=True)
for j in range(10):
p=Pool(3)
ga = GA(vehicle_num,env.vehicles_speed,target_num,env.targets,env.time_lim)
aco = ACO(vehicle_num,target_num,env.vehicles_speed,env.targets,env.time_lim)
pso = PSO(vehicle_num,target_num ,env.targets,env.vehicles_speed,env.time_lim)
ga_result=p.apply_async(ga.run)
aco_result=p.apply_async(aco.run)
pso_result=p.apply_async(pso.run)
p.close()
p.join()
ga_task_assignmet = ga_result.get()[0]
env.run(ga_task_assignmet,'GA',i+1,j+1)
re_ga[i].append((env.total_reward,ga_result.get()[1]))
env.reset()
aco_task_assignmet = aco_result.get()[0]
env.run(aco_task_assignmet,'ACO',i+1,j+1)
re_aco[i].append((env.total_reward,aco_result.get()[1]))
env.reset()
pso_task_assignmet = pso_result.get()[0]
env.run(pso_task_assignmet,'PSO',i+1,j+1)
re_pso[i].append((env.total_reward,pso_result.get()[1]))
env.reset()
x_index=np.arange(10)
ymax11=[]
ymax12=[]
ymax21=[]
ymax22=[]
ymax31=[]
ymax32=[]
ymean11=[]
ymean12=[]
ymean21=[]
ymean22=[]
ymean31=[]
ymean32=[]
for i in range(10):
tmp1=[re_ga[i][j][0] for j in range(10)]
tmp2=[re_ga[i][j][1] for j in range(10)]
ymax11.append(np.amax(tmp1))
ymax12.append(np.amax(tmp2))
ymean11.append(np.mean(tmp1))
ymean12.append(np.mean(tmp2))
tmp1=[re_aco[i][j][0] for j in range(10)]
tmp2=[re_aco[i][j][1] for j in range(10)]
ymax21.append(np.amax(tmp1))
ymax22.append(np.amax(tmp2))
ymean21.append(np.mean(tmp1))
ymean22.append(np.mean(tmp2))
tmp1=[re_pso[i][j][0] for j in range(10)]
tmp2=[re_pso[i][j][1] for j in range(10)]
ymax31.append(np.amax(tmp1))
ymax32.append(np.amax(tmp2))
ymean31.append(np.mean(tmp1))
ymean32.append(np.mean(tmp2))
rects1=plt.bar(x_index,ymax11,width=0.1,color='b',label='ga_max_reward')
rects2=plt.bar(x_index+0.1,ymax21,width=0.1,color='r',label='aco_max_reward')
rects3=plt.bar(x_index+0.2,ymax31,width=0.1,color='g',label='pso_max_reward')
plt.xticks(x_index+0.1,x_index)
plt.legend()
plt.title('max_reward_for_'+size+'_size')
plt.savefig('max_reward_'+size+'.png')
plt.cla()
rects1=plt.bar(x_index,ymax12,width=0.1,color='b',label='ga_max_time')
rects2=plt.bar(x_index+0.1,ymax22,width=0.1,color='r',label='aco_max_time')
rects3=plt.bar(x_index+0.2,ymax32,width=0.1,color='g',label='pso_max_time')
plt.xticks(x_index+0.1,x_index)
plt.legend()
plt.title('max_time_for_'+size+'_size')
plt.savefig('max_time_'+size+'.png')
plt.cla()
rects1=plt.bar(x_index,ymean11,width=0.1,color='b',label='ga_mean_reward')
rects2=plt.bar(x_index+0.1,ymean21,width=0.1,color='r',label='aco_mean_reward')
rects3=plt.bar(x_index+0.2,ymean31,width=0.1,color='g',label='pso_mean_reward')
plt.xticks(x_index+0.1,x_index)
plt.legend()
plt.title('mean_reward_for_'+size+'_size')
plt.savefig('mean_reward_'+size+'.png')
plt.cla()
rects1=plt.bar(x_index,ymean12,width=0.1,color='b',label='ga_mean_time')
rects2=plt.bar(x_index+0.1,ymean22,width=0.1,color='r',label='aco_mean_time')
rects3=plt.bar(x_index+0.2,ymean32,width=0.1,color='g',label='pso_mean_time')
plt.xticks(x_index+0.1,x_index)
plt.legend()
plt.title('mean_time_for_'+size+'_size')
plt.savefig('mean_time_'+size+'.png')
plt.cla()
t_ga=[]
r_ga=[]
t_aco=[]
r_aco=[]
t_pso=[]
r_pso=[]
for i in range(10):
for j in range(10):
t_ga.append(re_ga[i][j][1])
r_ga.append(re_ga[i][j][0])
t_aco.append(re_aco[i][j][1])
r_aco.append(re_aco[i][j][0])
t_pso.append(re_pso[i][j][1])
r_pso.append(re_pso[i][j][0])
dataframe = pd.DataFrame({'ga_time':t_ga,'ga_reward':r_ga,'aco_time':t_aco,'aco_reward':r_aco,'pso_time':t_pso,'pso_reward':r_pso})
dataframe.to_csv(size+'_size_result.csv',sep=',')
if __name__=='__main__':
# small scale
evaluate(5,30,5e3)
# medium scale
evaluate(10,60,1e4)
# large scale
evaluate(15,90,1.5e4)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/vivi_3_0/multi-uav-task-assignment-benchmark.git
[email protected]:vivi_3_0/multi-uav-task-assignment-benchmark.git
vivi_3_0
multi-uav-task-assignment-benchmark
Multi-UAV Task Assignment Benchmark
master

搜索帮助