1 Star 0 Fork 99

^^Tab^^/YOLO_v3_tensorflow

forked from 风酒/YOLO_v3_tensorflow 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
train.py 13.71 KB
一键复制 编辑 原始数据 按行查看 历史
风酒 提交于 2019-09-15 09:39 . train reverse
# coding: utf-8
from __future__ import division, print_function
import tensorflow as tf
import numpy as np
from tqdm import trange
from setting import train_args
from utils.data_utils import create_iterator
from utils.misc_utils import make_summary, config_learning_rate, config_optimizer, AverageMeter, Loss5
from utils.eval_utils import evaluate_on_gpu, get_preds_gpu, voc_eval, parse_gt_rec
from utils.nms_utils import gpu_nms
from net.model import yolov3
"""
train or fine-tuning
"""
def get_learning_rate(global_step):
"""
学习率
:param global_step:
:return:
"""
if train_args.use_warm_up:
learning_rate = tf.cond(
tf.less(global_step, train_args.train_batch_num * train_args.warm_up_epoch),
lambda: train_args.learning_rate_init * global_step / (train_args.train_batch_num * train_args.warm_up_epoch),
lambda: config_learning_rate(train_args, global_step - train_args.train_batch_num * train_args.warm_up_epoch)
)
else:
learning_rate = config_learning_rate(train_args, global_step)
return learning_rate
def build_optimizer(learning_rate, loss, l2_loss, update_vars, global_step):
"""
生成优化器
:return:
"""
print('\033[32m----------- Begin building optimizer -----------\033[0m')
optimizer = config_optimizer(train_args.optimizer_name, learning_rate)
# BN操作
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
# 梯度下降
gvs = optimizer.compute_gradients(loss[0] + l2_loss, var_list=update_vars) # 只优化update_vars中参数
# 应用gradient clip, 防止梯度爆炸
clip_grad_var = [gv if gv[0] is None else [
tf.clip_by_norm(gv[0], 100.), gv[1]] for gv in gvs]
train_op = optimizer.apply_gradients(clip_grad_var, global_step=global_step)
print('\033[32m----------- Finish building optimizer -----------\033[0m')
return train_op
class Train:
def __init__(self):
# 是否训练placeholders
self.is_training = tf.placeholder(tf.bool, name="is_training")
self.pred_boxes_flag = tf.placeholder(tf.float32, [1, None, None])
self.pred_scores_flag = tf.placeholder(tf.float32, [1, None, None])
self.best_mAP = -np.Inf
self.global_step = tf.Variable(
float(train_args.global_step), trainable=False, collections=[tf.GraphKeys.LOCAL_VARIABLES]
)
# dataset方法
self.train_init_op, self.val_init_op, self.image_ids, self.image, self.y_true = create_iterator()
self.sess = tf.Session()
self.epoch = 0
self.writer = tf.summary.FileWriter(train_args.log_dir, self.sess.graph)
self.__pre_operate()
def __loss_summary(self):
tf.summary.scalar('train_batch_statistics/total_loss', self.loss[0])
tf.summary.scalar('train_batch_statistics/loss_xy', self.loss[1])
tf.summary.scalar('train_batch_statistics/loss_wh', self.loss[2])
tf.summary.scalar('train_batch_statistics/loss_conf', self.loss[3])
tf.summary.scalar('train_batch_statistics/loss_class', self.loss[4])
tf.summary.scalar('train_batch_statistics/loss_l2', self.l2_loss)
tf.summary.scalar('train_batch_statistics/loss_ratio', self.l2_loss / self.loss[0])
tf.summary.scalar('learning_rate', self.learning_rate)
def __pre_operate(self):
"""
初始化部分操作
:return:
"""
# gpu nms 操作
self.gpu_nms_op = gpu_nms(
self.pred_boxes_flag, self.pred_scores_flag, train_args.class_num, train_args.nms_topk,
train_args.score_threshold, train_args.nms_threshold
)
# 模型加载
yolo_model = yolov3(
train_args.class_num, train_args.anchors, train_args.use_label_smooth, train_args.use_focal_loss,
train_args.batch_norm_decay, train_args.weight_decay, use_static_shape=False
)
with tf.variable_scope('yolov3'):
pred_feature_maps = yolo_model.forward(self.image, is_training=self.is_training)
# 预测值
self.y_pred = yolo_model.predict(pred_feature_maps)
# loss
self.loss = yolo_model.compute_loss(pred_feature_maps, self.y_true)
self.l2_loss = tf.losses.get_regularization_loss()
# 学习率
self.learning_rate = get_learning_rate(self.global_step)
self.__loss_summary()
# 加载Saver
self.saver_to_restore = tf.train.Saver(
var_list=tf.contrib.framework.get_variables_to_restore(
include=train_args.restore_include, exclude=train_args.restore_exclude
)
)
# 是否要保存优化器的参数
if not train_args.save_optimizer:
self.saver_to_save = tf.train.Saver()
self.saver_best = tf.train.Saver()
# 需要更新的变量
self.update_vars = tf.contrib.framework.get_variables_to_restore(include=train_args.update_part)
# 优化器
self.train_op = build_optimizer(self.learning_rate, self.loss, self.l2_loss, self.update_vars, self.global_step)
if train_args.save_optimizer:
self.saver_to_save = tf.train.Saver()
self.saver_best = tf.train.Saver()
self.sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()])
print('\033[32m----------- Begin resotre weights -----------\033[0m')
self.saver_to_restore.restore(self.sess, train_args.restore_path)
print('\033[32m----------- Finish resotre weights -----------\033[0m')
self.merged = tf.summary.merge_all()
def train(self):
"""
训练主体函数
:return:
"""
print('\n\033[32m-----------Begin train -----------\033[0m\n')
for epoch in range(train_args.total_epoches): # epoch
print('\033[32m---------epoch:{}---------\033[0m'.format(epoch))
self.epoch = epoch
self.sess.run(self.train_init_op) # 初始化训练集dataset
# 训练集5种损失
self.loss_5 = Loss5()
with trange(train_args.train_batch_num) as t:
for _ in t: # batch
# 优化器. summary, 预测值, gt, 损失, global_step, 学习率
_, __image_ids, summary, __y_pred, __y_true, __loss, __l2_loss, __global_step, __lr = self.sess.run(
[self.train_op, self.image_ids, self.merged, self.y_pred, self.y_true,
self.loss, self.l2_loss, self.global_step, self.learning_rate],
feed_dict={self.is_training: True}
)
self.writer.add_summary(summary, global_step=__global_step)
# 更新误差 loss_total, loss_xy, loss_wh, loss_conf, loss_class
self.loss_5.update(__loss, len(__y_pred[0]))
# self.__evaluate(__y_pred, __y_true, __global_step, __lr)
info = "{}=loss_total:{:.1f},xy:{:.2f},wh:{:.2f},conf:{:.2f},cls:{:.2f},L2:{:.7f}" \
.format(int(__global_step), __loss[0], __loss[1], __loss[2], __loss[3], __loss[4], __l2_loss)
t.set_postfix_str(info)
if __global_step % train_args.train_evaluation_step == 0 and __global_step > 0:
self.__evaluate(__y_pred, __y_true, __global_step, __lr)
# 保存模型
if epoch % train_args.save_epoch == 0 and epoch > 0:
if self.loss_5.loss_total.average <= 2.:
print('\033[32m ----------- Begin sotre weights-----------\033[0m')
self.saver_to_save.save(
self.sess,
train_args.save_dir + 'model_epoch_{}_step_{}_loss_{:.4f}_lr_{:.5g}'.format(
epoch, int(__global_step), self.loss_5.loss_total.average, __lr
)
)
print('\033[32m ----------Finish sotre weights-----------\033[0m')
if epoch % train_args.val_evaluation_epoch == 0 and epoch >= train_args.warm_up_epoch: # 要过了warm up
self.__evaluate_in_val(__global_step, __lr)
print('\n\033[32m-----------Finish training -----------\033[0m\n')
def __evaluate(self, __y_pred, __y_true, __global_step, __lr):
"""
验证
:return:
"""
print('\033[32m -----------Begin evaluating-----------\033[0m')
# 召回率,精确率
recall, precision = evaluate_on_gpu(
self.sess, self.gpu_nms_op, self.pred_boxes_flag, self.pred_scores_flag,
__y_pred, __y_true, train_args.class_num, train_args.nms_threshold)
info = '\nepoch:{}, global step{} || '.format(self.epoch, int(__global_step))
info += 'loss_total:{:.2f}, '.format(self.loss_5.loss_total.average)
info += 'loss_xy:{:.2f}, '.format(self.loss_5.loss_xy.average)
info += 'loss_wh:{:.2f}, '.format(self.loss_5.loss_wh.average)
info += 'loss_conf:{:.2f}, '.format(self.loss_5.loss_conf.average)
info += 'loss_class:{:.2f} || '.format(self.loss_5.loss_class.average)
info += '\nlast batch-->rec:{:.3f}, precision:{:.3f} | learning rate:{:.5g}' .format(recall, precision, __lr)
print(info)
self.writer.add_summary(
make_summary('evaluation/train_batch_recall', recall), global_step=__global_step
)
self.writer.add_summary(
make_summary('evaluation/train_batch_precision', precision), global_step=__global_step
)
if np.isnan(self.loss_5.loss_total.average):
raise ArithmeticError('梯度爆炸,修改参数后重新训练')
print('\033[32m -----------Finish evaluating-----------\033[0m')
def __evaluate_in_val(self, __global_step, __lr):
"""
验证集评估评估方法
:param __global_step:
:param __lr:
:return:
"""
print('\033[32m -----Begin evaluating in val data-----------\033[0m')
self.sess.run(self.val_init_op)
val_loss_5 = Loss5()
val_preds = []
for _ in trange(train_args.val_img_cnt): # 在整个验证集上验证
__image_ids, __y_pred, __loss = self.sess.run(
[self.image_ids, self.y_pred, self.loss], feed_dict={self.is_training: False}
)
pred_content = get_preds_gpu(
self.sess, self.gpu_nms_op, self.pred_boxes_flag,
self.pred_scores_flag, __image_ids, __y_pred
)
val_preds.extend(pred_content)
# 更新训练集误差
val_loss_5.update(__loss)
print("\nfinally--loss-->", __loss)
# 计算验证集mAP
rec_total, prec_total, ap_total = AverageMeter(), AverageMeter(), AverageMeter()
gt_dict = parse_gt_rec(train_args.val_file, train_args.img_size, train_args.letterbox_resize)
print('\n\033[32m -----Begin calculate mAP-------\033[0m')
info = 'epoch:{}, global_step:{}, lr:{:.6g} \n'.format(self.epoch, __global_step, __lr)
for j in range(train_args.class_num):
npos, nd, rec, prec, ap = voc_eval(
gt_dict, val_preds, j, iou_thres=train_args.eval_threshold,
use_07_metric=train_args.use_voc_07_metric
)
info += 'eval in each class:\nclass{}: recall:{:.4f}, precision:{:.4f}, AP:{:.4f}\n'.format(j, rec, prec, ap)
rec_total.update(rec, npos)
prec_total.update(prec, nd)
ap_total.update(ap, 1)
mAP = ap_total.average
info += 'eval: recall:{:.4f}, precision:{:.4f}, mAP:{:.4f}, ' \
.format(rec_total.average, prec_total.average, mAP)
info += 'loss: total:{:.2f}, xy:{:.2f}, wh:{:.2f}, conf:{:.2f}, class:{:.2f}\n'\
.format(
val_loss_5.loss_total.average,
val_loss_5.loss_xy.average,
val_loss_5.loss_wh.average,
val_loss_5.loss_conf.average,
val_loss_5.loss_class.average
)
print(info)
print('\033[32m -----Finish calculate mAP-------\033[0m')
if mAP > self.best_mAP:
self.best_mAP = mAP
self.saver_best.save(
self.sess,
train_args.save_dir + 'best_model_Epoch_{}_step_{}_mAP_{:.4f}_loss_{:.4f}_lr_{:.7g}'
.format(self.epoch, int(__global_step), self.best_mAP, val_loss_5.loss_total.average, __lr) # todo
)
self.writer.add_summary(
make_summary('evaluation/val_mAP', mAP), global_step=self.epoch
)
self.writer.add_summary(
make_summary('evaluation/val_recall', rec_total.average), global_step=self.epoch
)
self.writer.add_summary(
make_summary('evaluation/val_precision', prec_total.average), global_step=self.epoch
)
self.writer.add_summary(
make_summary('validation_statistics/total_loss', val_loss_5.loss_total.average), global_step=self.epoch
)
self.writer.add_summary(
make_summary('validation_statistics/loss_xy', val_loss_5.loss_xy.average), global_step=self.epoch
)
self.writer.add_summary(
make_summary('validation_statistics/loss_wh', val_loss_5.loss_wh.average), global_step=self.epoch
)
self.writer.add_summary(
make_summary('validation_statistics/loss_conf', val_loss_5.loss_conf.average), global_step=self.epoch
)
self.writer.add_summary(
make_summary('validation_statistics/loss_class', val_loss_5.loss_class.average), global_step=self.epoch
)
print('\033[32m -----Finish evaluating in val data-----------\033[0m')
if __name__ == '__main__':
train = Train()
train.train()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/twl001/YOLO_v3_tensorflow.git
[email protected]:twl001/YOLO_v3_tensorflow.git
twl001
YOLO_v3_tensorflow
YOLO_v3_tensorflow
master

搜索帮助