代码拉取完成,页面将自动刷新
/* fat-x86_64.c
Copyright (C) 2015 Niels Möller
This file is part of GNU Nettle.
GNU Nettle is free software: you can redistribute it and/or
modify it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your
option) any later version.
or both in parallel, as here.
GNU Nettle is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received copies of the GNU General Public License and
the GNU Lesser General Public License along with this program. If
not, see http://www.gnu.org/licenses/.
*/
#define _GNU_SOURCE
#if HAVE_CONFIG_H
# include "config.h"
#endif
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "nettle-types.h"
#include "aes-internal.h"
#include "ghash-internal.h"
#include "memxor.h"
#include "fat-setup.h"
void _nettle_cpuid (uint32_t input, uint32_t regs[4]);
struct x86_features
{
enum x86_vendor { X86_OTHER, X86_INTEL, X86_AMD } vendor;
int have_aesni;
int have_sha_ni;
int have_pclmul;
};
#define SKIP(s, slen, literal, llen) \
(((slen) >= (llen) && memcmp ((s), (literal), llen) == 0) \
? ((slen) -= (llen), (s) += (llen), 1) : 0)
#define MATCH(s, slen, literal, llen) \
((slen) == (llen) && memcmp ((s), (literal), llen) == 0)
static void
get_x86_features (struct x86_features *features)
{
const char *s;
features->vendor = X86_OTHER;
features->have_aesni = 0;
features->have_sha_ni = 0;
features->have_pclmul = 0;
s = secure_getenv (ENV_OVERRIDE);
if (s)
for (;;)
{
const char *sep = strchr (s, ',');
size_t length = sep ? (size_t) (sep - s) : strlen(s);
if (SKIP (s, length, "vendor:", 7))
{
if (MATCH(s, length, "intel", 5))
features->vendor = X86_INTEL;
else if (MATCH(s, length, "amd", 3))
features->vendor = X86_AMD;
}
else if (MATCH (s, length, "aesni", 5))
features->have_aesni = 1;
else if (MATCH (s, length, "sha_ni", 6))
features->have_sha_ni = 1;
else if (MATCH (s, length, "pclmul", 6))
features->have_pclmul = 1;
if (!sep)
break;
s = sep + 1;
}
else
{
uint32_t cpuid_data[4];
_nettle_cpuid (0, cpuid_data);
if (memcmp (cpuid_data + 1, "Genu" "ntel" "ineI", 12) == 0)
features->vendor = X86_INTEL;
else if (memcmp (cpuid_data + 1, "Auth" "cAMD" "enti", 12) == 0)
features->vendor = X86_AMD;
_nettle_cpuid (1, cpuid_data);
if (cpuid_data[2] & 0x2)
features->have_pclmul = 1;
if (cpuid_data[2] & 0x02000000)
features->have_aesni = 1;
_nettle_cpuid (7, cpuid_data);
if (cpuid_data[1] & 0x20000000)
features->have_sha_ni = 1;
}
}
DECLARE_FAT_FUNC(nettle_aes128_encrypt, aes128_crypt_func)
DECLARE_FAT_FUNC(nettle_aes128_decrypt, aes128_crypt_func)
DECLARE_FAT_FUNC_VAR(aes128_encrypt, aes128_crypt_func, c)
DECLARE_FAT_FUNC_VAR(aes128_encrypt, aes128_crypt_func, aesni)
DECLARE_FAT_FUNC_VAR(aes128_decrypt, aes128_crypt_func, c)
DECLARE_FAT_FUNC_VAR(aes128_decrypt, aes128_crypt_func, aesni)
DECLARE_FAT_FUNC(nettle_aes192_encrypt, aes192_crypt_func)
DECLARE_FAT_FUNC(nettle_aes192_decrypt, aes192_crypt_func)
DECLARE_FAT_FUNC_VAR(aes192_encrypt, aes192_crypt_func, c)
DECLARE_FAT_FUNC_VAR(aes192_encrypt, aes192_crypt_func, aesni)
DECLARE_FAT_FUNC_VAR(aes192_decrypt, aes192_crypt_func, c)
DECLARE_FAT_FUNC_VAR(aes192_decrypt, aes192_crypt_func, aesni)
DECLARE_FAT_FUNC(nettle_aes256_encrypt, aes256_crypt_func)
DECLARE_FAT_FUNC(nettle_aes256_decrypt, aes256_crypt_func)
DECLARE_FAT_FUNC_VAR(aes256_encrypt, aes256_crypt_func, c)
DECLARE_FAT_FUNC_VAR(aes256_encrypt, aes256_crypt_func, aesni)
DECLARE_FAT_FUNC_VAR(aes256_decrypt, aes256_crypt_func, c)
DECLARE_FAT_FUNC_VAR(aes256_decrypt, aes256_crypt_func, aesni)
DECLARE_FAT_FUNC(nettle_cbc_aes128_encrypt, cbc_aes128_encrypt_func);
DECLARE_FAT_FUNC_VAR(cbc_aes128_encrypt, cbc_aes128_encrypt_func, c);
DECLARE_FAT_FUNC_VAR(cbc_aes128_encrypt, cbc_aes128_encrypt_func, aesni);
DECLARE_FAT_FUNC(nettle_cbc_aes192_encrypt, cbc_aes192_encrypt_func);
DECLARE_FAT_FUNC_VAR(cbc_aes192_encrypt, cbc_aes192_encrypt_func, c);
DECLARE_FAT_FUNC_VAR(cbc_aes192_encrypt, cbc_aes192_encrypt_func, aesni);
DECLARE_FAT_FUNC(nettle_cbc_aes256_encrypt, cbc_aes256_encrypt_func);
DECLARE_FAT_FUNC_VAR(cbc_aes256_encrypt, cbc_aes256_encrypt_func, c);
DECLARE_FAT_FUNC_VAR(cbc_aes256_encrypt, cbc_aes256_encrypt_func, aesni);
DECLARE_FAT_FUNC(nettle_memxor, memxor_func)
DECLARE_FAT_FUNC_VAR(memxor, memxor_func, x86_64)
DECLARE_FAT_FUNC_VAR(memxor, memxor_func, sse2)
DECLARE_FAT_FUNC(nettle_sha1_compress, sha1_compress_func)
DECLARE_FAT_FUNC_VAR(sha1_compress, sha1_compress_func, x86_64)
DECLARE_FAT_FUNC_VAR(sha1_compress, sha1_compress_func, sha_ni)
DECLARE_FAT_FUNC(_nettle_sha256_compress_n, sha256_compress_n_func)
DECLARE_FAT_FUNC_VAR(sha256_compress_n, sha256_compress_n_func, x86_64)
DECLARE_FAT_FUNC_VAR(sha256_compress_n, sha256_compress_n_func, sha_ni)
DECLARE_FAT_FUNC(_nettle_ghash_set_key, ghash_set_key_func)
DECLARE_FAT_FUNC_VAR(ghash_set_key, ghash_set_key_func, c)
DECLARE_FAT_FUNC_VAR(ghash_set_key, ghash_set_key_func, pclmul)
DECLARE_FAT_FUNC(_nettle_ghash_update, ghash_update_func)
DECLARE_FAT_FUNC_VAR(ghash_update, ghash_update_func, table)
DECLARE_FAT_FUNC_VAR(ghash_update, ghash_update_func, pclmul)
/* This function should usually be called only once, at startup. But
it is idempotent, and on x86, pointer updates are atomic, so
there's no danger if it is called simultaneously from multiple
threads. */
static void CONSTRUCTOR
fat_init (void)
{
struct x86_features features;
int verbose;
verbose = secure_getenv (ENV_VERBOSE) != NULL;
if (verbose)
fprintf (stderr, "libnettle: fat library initialization.\n");
get_x86_features (&features);
if (verbose)
{
const char * const vendor_names[3] =
{ "other", "intel", "amd" };
fprintf (stderr, "libnettle: cpu features: vendor:%s%s%s%s\n",
vendor_names[features.vendor],
features.have_aesni ? ",aesni" : "",
features.have_sha_ni ? ",sha_ni" : "",
features.have_pclmul ? ",pclmul" : "");
}
if (features.have_aesni)
{
if (verbose)
fprintf (stderr, "libnettle: using aes instructions.\n");
nettle_aes128_encrypt_vec = _nettle_aes128_encrypt_aesni;
nettle_aes128_decrypt_vec = _nettle_aes128_decrypt_aesni;
nettle_aes192_encrypt_vec = _nettle_aes192_encrypt_aesni;
nettle_aes192_decrypt_vec = _nettle_aes192_decrypt_aesni;
nettle_aes256_encrypt_vec = _nettle_aes256_encrypt_aesni;
nettle_aes256_decrypt_vec = _nettle_aes256_decrypt_aesni;
nettle_cbc_aes128_encrypt_vec = _nettle_cbc_aes128_encrypt_aesni;
nettle_cbc_aes192_encrypt_vec = _nettle_cbc_aes192_encrypt_aesni;
nettle_cbc_aes256_encrypt_vec = _nettle_cbc_aes256_encrypt_aesni;
}
else
{
if (verbose)
fprintf (stderr, "libnettle: not using aes instructions.\n");
nettle_aes128_encrypt_vec = _nettle_aes128_encrypt_c;
nettle_aes128_decrypt_vec = _nettle_aes128_decrypt_c;
nettle_aes192_encrypt_vec = _nettle_aes192_encrypt_c;
nettle_aes192_decrypt_vec = _nettle_aes192_decrypt_c;
nettle_aes256_encrypt_vec = _nettle_aes256_encrypt_c;
nettle_aes256_decrypt_vec = _nettle_aes256_decrypt_c;
nettle_cbc_aes128_encrypt_vec = _nettle_cbc_aes128_encrypt_c;
nettle_cbc_aes192_encrypt_vec = _nettle_cbc_aes192_encrypt_c;
nettle_cbc_aes256_encrypt_vec = _nettle_cbc_aes256_encrypt_c;
}
if (features.have_sha_ni)
{
if (verbose)
fprintf (stderr, "libnettle: using sha_ni instructions.\n");
nettle_sha1_compress_vec = _nettle_sha1_compress_sha_ni;
_nettle_sha256_compress_n_vec = _nettle_sha256_compress_n_sha_ni;
}
else
{
if (verbose)
fprintf (stderr, "libnettle: not using sha_ni instructions.\n");
nettle_sha1_compress_vec = _nettle_sha1_compress_x86_64;
_nettle_sha256_compress_n_vec = _nettle_sha256_compress_n_x86_64;
}
if (features.have_pclmul)
{
if (verbose)
fprintf (stderr, "libnettle: using pclmulqdq instructions.\n");
_nettle_ghash_set_key_vec = _nettle_ghash_set_key_pclmul;
_nettle_ghash_update_vec = _nettle_ghash_update_pclmul;
}
else
{
if (verbose)
fprintf (stderr, "libnettle: not using pclmulqdq instructions.\n");
_nettle_ghash_set_key_vec = _nettle_ghash_set_key_c;
_nettle_ghash_update_vec = _nettle_ghash_update_table;
}
if (features.vendor == X86_INTEL)
{
if (verbose)
fprintf (stderr, "libnettle: intel SSE2 will be used for memxor.\n");
nettle_memxor_vec = _nettle_memxor_sse2;
}
else
{
if (verbose)
fprintf (stderr, "libnettle: intel SSE2 will not be used for memxor.\n");
nettle_memxor_vec = _nettle_memxor_x86_64;
}
}
DEFINE_FAT_FUNC(nettle_aes128_encrypt, void,
(const struct aes128_ctx *ctx, size_t length,
uint8_t *dst,const uint8_t *src),
(ctx, length, dst, src))
DEFINE_FAT_FUNC(nettle_aes128_decrypt, void,
(const struct aes128_ctx *ctx, size_t length,
uint8_t *dst,const uint8_t *src),
(ctx, length, dst, src))
DEFINE_FAT_FUNC(nettle_aes192_encrypt, void,
(const struct aes192_ctx *ctx, size_t length,
uint8_t *dst,const uint8_t *src),
(ctx, length, dst, src))
DEFINE_FAT_FUNC(nettle_aes192_decrypt, void,
(const struct aes192_ctx *ctx, size_t length,
uint8_t *dst,const uint8_t *src),
(ctx, length, dst, src))
DEFINE_FAT_FUNC(nettle_aes256_encrypt, void,
(const struct aes256_ctx *ctx, size_t length,
uint8_t *dst,const uint8_t *src),
(ctx, length, dst, src))
DEFINE_FAT_FUNC(nettle_aes256_decrypt, void,
(const struct aes256_ctx *ctx, size_t length,
uint8_t *dst,const uint8_t *src),
(ctx, length, dst, src))
DEFINE_FAT_FUNC(nettle_cbc_aes128_encrypt, void,
(const struct aes128_ctx *ctx, uint8_t *iv,
size_t length, uint8_t *dst, const uint8_t *src),
(ctx, iv, length, dst, src))
DEFINE_FAT_FUNC(nettle_cbc_aes192_encrypt, void,
(const struct aes192_ctx *ctx, uint8_t *iv,
size_t length, uint8_t *dst, const uint8_t *src),
(ctx, iv, length, dst, src))
DEFINE_FAT_FUNC(nettle_cbc_aes256_encrypt, void,
(const struct aes256_ctx *ctx, uint8_t *iv,
size_t length, uint8_t *dst, const uint8_t *src),
(ctx, iv, length, dst, src))
DEFINE_FAT_FUNC(nettle_memxor, void *,
(void *dst, const void *src, size_t n),
(dst, src, n))
DEFINE_FAT_FUNC(nettle_sha1_compress, void,
(uint32_t *state, const uint8_t *input),
(state, input))
DEFINE_FAT_FUNC(_nettle_sha256_compress_n, const uint8_t *,
(uint32_t *state, const uint32_t *k,
size_t blocks, const uint8_t *input),
(state, k, blocks, input))
DEFINE_FAT_FUNC(_nettle_ghash_set_key, void,
(struct gcm_key *ctx, const union nettle_block16 *key),
(ctx, key))
DEFINE_FAT_FUNC(_nettle_ghash_update, const uint8_t *,
(const struct gcm_key *ctx, union nettle_block16 *state,
size_t blocks, const uint8_t *data),
(ctx, state, blocks, data))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。