代码拉取完成,页面将自动刷新
# Train params
lr: 0.0001
lr_backbone: 0.00001
lr_drop: 200
weight_decay: 0.0001
clip_max_norm: 0.1
batch_size: 4
start_epoch: 0
epochs: 300
save_num_ckpt: 10
resume: ""
pretrained: "/home/w30005666/ckpt/ms_resnet_50.ckpt"
seed: 42
# Context
device_id: 0
device_target: "Ascend"
context_mode: "pynative"
coco_path: "/opt/npu/data/coco2017"
output_dir: "./outputs"
mindrecord_dir: "/home/w30005666/coco_mindrecord/"
clip_max_norm: 0.1
dropout: 0.1
# Loss
aux_loss: True
# Dataset parameters
dataset_file: 'coco'
coco_path: ""
train_data_type: "train2017"
val_data_type: 'val2017'
num_classes: 91
output_dir: ''
num_parallel_workers: 8
python_multiprocessing: False
max_size: 960
flip_ratio: 0.5
# Backbone
backbone: "resnet50"
# Transformer
enc_layers: 6
dec_layers: 6
dim_feedforward: 2048
hidden_dim: 256
dropout: 0.1
nheads: 8
num_queries: 100
pre_norm: False
# Matcher
set_cost_class: 1
set_cost_bbox: 5
set_cost_giou: 2
# Loss coefficients
dice_loss_coef: 1
bbox_loss_coef: 5
giou_loss_coef: 2
eos_coef: 0.1
# Distributed switch
distributed: 1
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。