代码拉取完成,页面将自动刷新
# 利用训练好的模型操作小车,实现自动驾驶
# 树莓派上跑,加上训练出来的模型,不会立刻能跑起来,需要时间读入模型
# 自动驾驶模型真实道路模拟行驶
# 多线程处理
import os
import io
import glob
import time
import threading
import picamera.array
import picamera
from PIL import Image
import numpy as np
import zth_car_control
from keras.models import load_model
import tensorflow as tf
# 找到最大的可能性
def get_max_prob_num(predictions_array):
prediction_edit = np.zeros([1, 5])
for i in range(0, 5):
if predictions_array[0][i] == predictions_array.max():
prediction_edit[0][i] = 1
return i
return 2
# 根据神经网络预测的结果来控制小车
def control_car(action_num):
if action_num == 0:
print("Left")
zth_car_control.car_turn_left()
time.sleep(0.25)
elif action_num == 1:
print("Right")
zth_car_control.car_turn_right()
time.sleep(0.25)
elif action_num == 2:
print("Forward")
zth_car_control.car_move_forward()
elif action_num == 3:
zth_car_control.car_move_backward()
print("Backward")
else:
zth_car_control.car_stop()
print('stop')
# 利用神经网络的模型预测图像
class ImageProcessor(threading.Thread):
def __init__(self, owner):
super(ImageProcessor, self).__init__()
self.stream = io.BytesIO()
self.event = threading.Event()
self.terminated = False
self.owner = owner
self.start()
def run(self):
global latest_time, model, graph
while not self.terminated:
if self.event.wait(1):
try:
self.stream.seek(0)
image = Image.open(self.stream)
image_np = np.array(image)
camera_data_array = np.expand_dims(image_np, axis=0)
current_time = time.time()
if current_time > latest_time:
if current_time - latest_time > 1:
print("*"*30)
print(current_time-latest_time)
print("*"*30)
latest_time = current_time
with graph.as_default():
prediction_array = model.predict(camera_data_array, batch_size=20, verbode=1)
# 输出的是概率,比如[0.1,0.1,0.8,0.05,0.04]
print(prediction_array)
action_num = get_max_prob_num(prediction_array)
control_car(action_num)
finally:
self.stream.seek(0)
self.stream.truncate()
self.event.clear()
with self.owner.lock:
self.owner.pool.append(self)
# 多线程处理
class ProcessOutput(object):
def __init__(self):
self.done = False
self.lock = threading.Lock()
self.pool = [ImageProcessor(self) for i in range(4)]
self.processor = None
def write(self, buf):
if buf.startswith(b'\xff\xd8'):
if self.processor:
self.processor.event.set()
with self.lock:
if self.pool:
self.processor = self.pool.pop()
else:
self.processor = None
if self.processor:
self.processor.stream.write(buf)
def flush(self):
if self.processor:
with self.lock:
self.pool.append(self.processor)
self.processor = None
while True:
with self.lock:
try:
proc = self.pool.pop()
except IndexError:
pass
proc.terminated = True
proc.join()
def main():
"""获取数据,然后预测获得的数据,编辑数据,控制车行驶"""
global model, graph
model_loaded = glob.glob('model/*.h5') # glob.glob()匹配指定的文件
for single_mod in model_loaded:
model = load_model(single_mod)
graph = tf.get_default_graph()
try:
with picamera.PiCamera(resolution=(160, 120)) as camera:
time.sleep(2)
output = ProcessOutput()
camera.start_recording(output, format='mjpeg')
while not output.done:
camera.wait_recording(1)
camera.stop_recording()
finally:
zth_car_control.clean_GPIO()
if __name__ == '__main__':
global latest_time
latest_time = time.time()
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。