1 Star 0 Fork 14

szz/2022年数据分析岗位招聘数据可视化项目

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
picture.py 10.50 KB
一键复制 编辑 原始数据 按行查看 历史
from bokeh.plotting import figure
from pyecharts.charts import Bar, Grid, Line, Pie, Tab
import jieba
import pandas as pd
from collections import Counter
from pyecharts.charts import Line,Pie,Scatter,Bar,Map,Grid
from pyecharts.charts import WordCloud
from pyecharts import options as opts
from pyecharts.globals import ThemeType
from pyecharts.globals import SymbolType
from pyecharts.commons.utils import JsCode
from pyecharts.charts import Funnel
import os
import numpy as np
import pyecharts.options as opts
df = pd.read_excel('data/2022年数据分析岗位招聘数据.xlsx')
df['城市'] = df['地点'].apply(lambda x:x.split('-')[0])
#滑动柱状图
def mpg_view():
job_demand = df.省份.value_counts().sort_values(ascending=True)
color_js = """new echarts.graphic.LinearGradient(0, 0, 1, 0,
[{offset: 0, color: '#72EDF2'}, {offset: 1, color: '#5151E5'}], false)"""
x_data = job_demand.index.tolist()
y_data = job_demand.values.tolist()
b1 = (
Bar(init_opts=opts.InitOpts())
.add_xaxis(x_data)
.add_yaxis('',
y_data,
category_gap="50%",
label_opts=opts.LabelOpts(
position='top',
font_size=13,
color='#333333',
font_weight='bolder',
font_style='normal',
formatter='{c}'
),
)
.set_series_opts(
itemstyle_opts={
"normal": {
"color": JsCode(color_js),
"barBorderRadius": [100, 100, 100, 100]
}
}
)
.set_global_opts(
title_opts=opts.TitleOpts(title='数据分析岗位招聘数量省份排名',
title_textstyle_opts=opts.TextStyleOpts(),
pos_top='7%', pos_left='center'
),
legend_opts=opts.LegendOpts(is_show=False),
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
yaxis_opts=opts.AxisOpts(name="",
name_location='middle',
name_gap=40,
name_textstyle_opts=opts.TextStyleOpts(font_size=16)),
datazoom_opts=[opts.DataZoomOpts(range_start=1, range_end=50)]
)
)
b1.render('templates/mpg.html')
#地图
def vbar():
df_city=df['省份'].value_counts()
m1 = (
Map()
.add('全国数据分析岗位数量分布', [list(z) for z in zip(df_city.index.values.tolist(), df_city.values.tolist())],
'china')
.set_global_opts(
title_opts=opts.TitleOpts(title='全国数据分析岗位数量分布'),
visualmap_opts=opts.VisualMapOpts(max_=100, is_piecewise=False,
range_color=["white", "#72EDF2", "#5151E5"]),
)
)
m1.render('templates/vbar.html')
#词云图
def wordcloud():
tag_array = df['岗位标签'].apply(lambda x:eval(x)).tolist()
tag_lis = []
for tag in tag_array:
tag_lis += tag
tag_df = pd.DataFrame(tag_lis,columns = ['职位标签'])
tag_df_cnt = tag_df['职位标签'].value_counts().reset_index()
tag_df_cnt.columns = ['职位标签','计数']
word_cnt_lis = [tag for tag in zip(tag_df_cnt['职位标签'],tag_df_cnt['计数'])]
wc = (
WordCloud()
.add("",
word_cnt_lis,
shape="diamond"
)
.set_global_opts(
title_opts=opts.TitleOpts(title="数据分析岗位标签词云图"),
)
)
wc.render('templates/wordcloud.html')
#环形图
def xueli():
g = df2.groupby('学历要求')
job_name = g.count()['职位名称']
directions = job_name.index.tolist()
count = job_name.values.tolist()
c1 = (
Pie(init_opts=opts.InitOpts())
.add(
'',
[list(z) for z in zip(directions, count)],
radius=['40%', '75%'],
center=['40%', '50%'],
# rosetype="radius",
label_opts=opts.LabelOpts(is_show=True),
itemstyle_opts={
"normal": {
"barBorderRadius": [30, 30, 30, 30],
'shadowBlur': 10,
'shadowColor': 'rgba(0,191,255,0.5)',
'shadowOffsetY': 1,
'opacity': 0.8,
}
},
)
.set_global_opts(
title_opts=opts.TitleOpts(title='学历要求',
pos_left='1%'
),
legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%",pos_top="25%",orient="vertical")
)
.set_series_opts(
abel_opts=opts.LabelOpts(
formatter="{b}:{d}%",
color="#00c6d7",
font_size="20",
),
)
)
c1.render('templates/xueli.html')
def echarts_bar(x,y,title = '主标题',subtitle = '副标题',label = '图例'):
bar = Bar(
init_opts=opts.InitOpts(
theme='shine',
)
)
bar.add_xaxis(job_experience.index.tolist())
bar.add_yaxis(label,job_experience.values.tolist(),
label_opts=opts.LabelOpts(is_show=True)
,category_gap="50%"
)
bar.reversal_axis()
bar.set_series_opts(
label_opts=opts.LabelOpts(
is_show=True,
position='right',
font_size=15,
color= '#333333',
font_weight = 'bolder',
font_style = 'oblique',
),
itemstyle_opts={
"normal": {
"color": JsCode(
"""new echarts.graphic.LinearGradient(0, 0, 1, 0,
[{offset: 0, color: '#72EDF2'}, {offset: 1, color: '#5151E5'}], false)"""
), # 调整柱子颜色渐变
'shadowBlur': 6, # 光影大小
"barBorderRadius": [100, 100, 100, 100], # 调整柱子圆角弧度
"shadowColor": "#999999", # 调整阴影颜色
'shadowOffsetY': 2,
'shadowOffsetX': 2, # 偏移量
}
}
)
bar.set_global_opts(
title_opts=opts.TitleOpts(
title=title,
subtitle=subtitle,
title_textstyle_opts=opts.TextStyleOpts(color='#2C3B4C', font_size=20,font_weight='bolder')
),
legend_opts=opts.LegendOpts(
is_show=True,
pos_left='right',
pos_top='3%',
orient='horizontal'
),
tooltip_opts=opts.TooltipOpts(
is_show=True,
trigger='axis',
trigger_on='mousemove|click',
axis_pointer_type='cross',
),
yaxis_opts=opts.AxisOpts(
is_show=True,
splitline_opts=opts.SplitLineOpts(is_show=False),
axistick_opts=opts.AxisTickOpts(is_show=False),
axislabel_opts=opts.LabelOpts(
font_size=13,
font_weight='bolder'
),
),
xaxis_opts=opts.AxisOpts(
boundary_gap=True,
axistick_opts=opts.AxisTickOpts(is_show=True),
splitline_opts=opts.SplitLineOpts(is_show=False),
axisline_opts=opts.AxisLineOpts(is_show=True),
axislabel_opts=opts.LabelOpts(
font_size=13,
font_weight='bolder'
),
),
)
bar.render('templates/jingyan.html')
#柱状图
def beijing():
beijing_demand = df[df['城市'] == '北京']['地点'].value_counts().sort_values(ascending = False)
c1 = (
Bar()
.add_xaxis(beijing_demand.index.tolist())
.add_yaxis("岗位数", beijing_demand.values.tolist(), category_gap="60%")
.set_series_opts(
itemstyle_opts={
"normal": {
"color": JsCode(
"""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
offset: 0,
color: 'rgba(0, 244, 255, 1)'
}, {
offset: 1,
color: 'rgba(0, 77, 167, 1)'
}], false)"""
),
"barBorderRadius": [30, 30, 30, 30],
"shadowColor": "rgb(0, 160, 221)",
}
}
)
.set_global_opts(title_opts=opts.TitleOpts(title="北京市各个地区岗位分布数量情况"))
)
c1.render('templates/beijing.html')
def shanghai():
shanghai_demand = df[df['城市'] == '上海']['地点'].value_counts().sort_values(ascending = False)
c2 = (
Bar()
.add_xaxis(shanghai_demand.index.tolist())
.add_yaxis("岗位数", shanghai_demand.values.tolist(), category_gap="60%")
.set_series_opts(
itemstyle_opts={
"normal": {
"color": JsCode(
"""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
offset: 0,
color: 'rgba(0, 244, 255, 1)'
}, {
offset: 1,
color: 'rgba(0, 77, 167, 1)'
}], false)"""
),
"barBorderRadius": [30, 30, 30, 30],
"shadowColor": "rgb(0, 160, 221)",
}
}
)
.set_global_opts(title_opts=opts.TitleOpts(title="上海市各个地区岗位分布数量情况"))
)
c2.render('templates/shanghai.html')
def guangzhou():
guangzhou_demand = df[df['城市'] == '广州']['地点'].value_counts().sort_values(ascending = False)
c3 = (
Bar()
.add_xaxis(guangzhou_demand.index.tolist())
.add_yaxis("岗位数", guangzhou_demand.values.tolist(), category_gap="60%")
.set_series_opts(
itemstyle_opts={
"normal": {
"color": JsCode(
"""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
offset: 0,
color: 'rgba(0, 244, 255, 1)'
}, {
offset: 1,
color: 'rgba(0, 77, 167, 1)'
}], false)"""
),
"barBorderRadius": [30, 30, 30, 30],
"shadowColor": "rgb(0, 160, 221)",
}
}
)
.set_global_opts(title_opts=opts.TitleOpts(title="广州市各个地区岗位分布数量情况"))
)
c3.render('templates/guangzhou.html')
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/szzdegitee/shujukeshihua.git
[email protected]:szzdegitee/shujukeshihua.git
szzdegitee
shujukeshihua
2022年数据分析岗位招聘数据可视化项目
master

搜索帮助