代码拉取完成,页面将自动刷新
同步操作将从 小黄/2022年数据分析岗位招聘数据可视化项目 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
from bokeh.plotting import figure
from pyecharts.charts import Bar, Grid, Line, Pie, Tab
import jieba
import pandas as pd
from collections import Counter
from pyecharts.charts import Line,Pie,Scatter,Bar,Map,Grid
from pyecharts.charts import WordCloud
from pyecharts import options as opts
from pyecharts.globals import ThemeType
from pyecharts.globals import SymbolType
from pyecharts.commons.utils import JsCode
from pyecharts.charts import Funnel
import os
import numpy as np
import pyecharts.options as opts
df = pd.read_excel('data/2022年数据分析岗位招聘数据.xlsx')
df['城市'] = df['地点'].apply(lambda x:x.split('-')[0])
#滑动柱状图
def mpg_view():
job_demand = df.省份.value_counts().sort_values(ascending=True)
color_js = """new echarts.graphic.LinearGradient(0, 0, 1, 0,
[{offset: 0, color: '#72EDF2'}, {offset: 1, color: '#5151E5'}], false)"""
x_data = job_demand.index.tolist()
y_data = job_demand.values.tolist()
b1 = (
Bar(init_opts=opts.InitOpts())
.add_xaxis(x_data)
.add_yaxis('',
y_data,
category_gap="50%",
label_opts=opts.LabelOpts(
position='top',
font_size=13,
color='#333333',
font_weight='bolder',
font_style='normal',
formatter='{c}'
),
)
.set_series_opts(
itemstyle_opts={
"normal": {
"color": JsCode(color_js),
"barBorderRadius": [100, 100, 100, 100]
}
}
)
.set_global_opts(
title_opts=opts.TitleOpts(title='数据分析岗位招聘数量省份排名',
title_textstyle_opts=opts.TextStyleOpts(),
pos_top='7%', pos_left='center'
),
legend_opts=opts.LegendOpts(is_show=False),
xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),
yaxis_opts=opts.AxisOpts(name="",
name_location='middle',
name_gap=40,
name_textstyle_opts=opts.TextStyleOpts(font_size=16)),
datazoom_opts=[opts.DataZoomOpts(range_start=1, range_end=50)]
)
)
b1.render('templates/mpg.html')
#地图
def vbar():
df_city=df['省份'].value_counts()
m1 = (
Map()
.add('全国数据分析岗位数量分布', [list(z) for z in zip(df_city.index.values.tolist(), df_city.values.tolist())],
'china')
.set_global_opts(
title_opts=opts.TitleOpts(title='全国数据分析岗位数量分布'),
visualmap_opts=opts.VisualMapOpts(max_=100, is_piecewise=False,
range_color=["white", "#72EDF2", "#5151E5"]),
)
)
m1.render('templates/vbar.html')
#词云图
def wordcloud():
tag_array = df['岗位标签'].apply(lambda x:eval(x)).tolist()
tag_lis = []
for tag in tag_array:
tag_lis += tag
tag_df = pd.DataFrame(tag_lis,columns = ['职位标签'])
tag_df_cnt = tag_df['职位标签'].value_counts().reset_index()
tag_df_cnt.columns = ['职位标签','计数']
word_cnt_lis = [tag for tag in zip(tag_df_cnt['职位标签'],tag_df_cnt['计数'])]
wc = (
WordCloud()
.add("",
word_cnt_lis,
shape="diamond"
)
.set_global_opts(
title_opts=opts.TitleOpts(title="数据分析岗位标签词云图"),
)
)
wc.render('templates/wordcloud.html')
#环形图
def xueli():
g = df2.groupby('学历要求')
job_name = g.count()['职位名称']
directions = job_name.index.tolist()
count = job_name.values.tolist()
c1 = (
Pie(init_opts=opts.InitOpts())
.add(
'',
[list(z) for z in zip(directions, count)],
radius=['40%', '75%'],
center=['40%', '50%'],
# rosetype="radius",
label_opts=opts.LabelOpts(is_show=True),
itemstyle_opts={
"normal": {
"barBorderRadius": [30, 30, 30, 30],
'shadowBlur': 10,
'shadowColor': 'rgba(0,191,255,0.5)',
'shadowOffsetY': 1,
'opacity': 0.8,
}
},
)
.set_global_opts(
title_opts=opts.TitleOpts(title='学历要求',
pos_left='1%'
),
legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%",pos_top="25%",orient="vertical")
)
.set_series_opts(
abel_opts=opts.LabelOpts(
formatter="{b}:{d}%",
color="#00c6d7",
font_size="20",
),
)
)
c1.render('templates/xueli.html')
def echarts_bar(x,y,title = '主标题',subtitle = '副标题',label = '图例'):
bar = Bar(
init_opts=opts.InitOpts(
theme='shine',
)
)
bar.add_xaxis(job_experience.index.tolist())
bar.add_yaxis(label,job_experience.values.tolist(),
label_opts=opts.LabelOpts(is_show=True)
,category_gap="50%"
)
bar.reversal_axis()
bar.set_series_opts(
label_opts=opts.LabelOpts(
is_show=True,
position='right',
font_size=15,
color= '#333333',
font_weight = 'bolder',
font_style = 'oblique',
),
itemstyle_opts={
"normal": {
"color": JsCode(
"""new echarts.graphic.LinearGradient(0, 0, 1, 0,
[{offset: 0, color: '#72EDF2'}, {offset: 1, color: '#5151E5'}], false)"""
), # 调整柱子颜色渐变
'shadowBlur': 6, # 光影大小
"barBorderRadius": [100, 100, 100, 100], # 调整柱子圆角弧度
"shadowColor": "#999999", # 调整阴影颜色
'shadowOffsetY': 2,
'shadowOffsetX': 2, # 偏移量
}
}
)
bar.set_global_opts(
title_opts=opts.TitleOpts(
title=title,
subtitle=subtitle,
title_textstyle_opts=opts.TextStyleOpts(color='#2C3B4C', font_size=20,font_weight='bolder')
),
legend_opts=opts.LegendOpts(
is_show=True,
pos_left='right',
pos_top='3%',
orient='horizontal'
),
tooltip_opts=opts.TooltipOpts(
is_show=True,
trigger='axis',
trigger_on='mousemove|click',
axis_pointer_type='cross',
),
yaxis_opts=opts.AxisOpts(
is_show=True,
splitline_opts=opts.SplitLineOpts(is_show=False),
axistick_opts=opts.AxisTickOpts(is_show=False),
axislabel_opts=opts.LabelOpts(
font_size=13,
font_weight='bolder'
),
),
xaxis_opts=opts.AxisOpts(
boundary_gap=True,
axistick_opts=opts.AxisTickOpts(is_show=True),
splitline_opts=opts.SplitLineOpts(is_show=False),
axisline_opts=opts.AxisLineOpts(is_show=True),
axislabel_opts=opts.LabelOpts(
font_size=13,
font_weight='bolder'
),
),
)
bar.render('templates/jingyan.html')
#柱状图
def beijing():
beijing_demand = df[df['城市'] == '北京']['地点'].value_counts().sort_values(ascending = False)
c1 = (
Bar()
.add_xaxis(beijing_demand.index.tolist())
.add_yaxis("岗位数", beijing_demand.values.tolist(), category_gap="60%")
.set_series_opts(
itemstyle_opts={
"normal": {
"color": JsCode(
"""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
offset: 0,
color: 'rgba(0, 244, 255, 1)'
}, {
offset: 1,
color: 'rgba(0, 77, 167, 1)'
}], false)"""
),
"barBorderRadius": [30, 30, 30, 30],
"shadowColor": "rgb(0, 160, 221)",
}
}
)
.set_global_opts(title_opts=opts.TitleOpts(title="北京市各个地区岗位分布数量情况"))
)
c1.render('templates/beijing.html')
def shanghai():
shanghai_demand = df[df['城市'] == '上海']['地点'].value_counts().sort_values(ascending = False)
c2 = (
Bar()
.add_xaxis(shanghai_demand.index.tolist())
.add_yaxis("岗位数", shanghai_demand.values.tolist(), category_gap="60%")
.set_series_opts(
itemstyle_opts={
"normal": {
"color": JsCode(
"""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
offset: 0,
color: 'rgba(0, 244, 255, 1)'
}, {
offset: 1,
color: 'rgba(0, 77, 167, 1)'
}], false)"""
),
"barBorderRadius": [30, 30, 30, 30],
"shadowColor": "rgb(0, 160, 221)",
}
}
)
.set_global_opts(title_opts=opts.TitleOpts(title="上海市各个地区岗位分布数量情况"))
)
c2.render('templates/shanghai.html')
def guangzhou():
guangzhou_demand = df[df['城市'] == '广州']['地点'].value_counts().sort_values(ascending = False)
c3 = (
Bar()
.add_xaxis(guangzhou_demand.index.tolist())
.add_yaxis("岗位数", guangzhou_demand.values.tolist(), category_gap="60%")
.set_series_opts(
itemstyle_opts={
"normal": {
"color": JsCode(
"""new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
offset: 0,
color: 'rgba(0, 244, 255, 1)'
}, {
offset: 1,
color: 'rgba(0, 77, 167, 1)'
}], false)"""
),
"barBorderRadius": [30, 30, 30, 30],
"shadowColor": "rgb(0, 160, 221)",
}
}
)
.set_global_opts(title_opts=opts.TitleOpts(title="广州市各个地区岗位分布数量情况"))
)
c3.render('templates/guangzhou.html')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。