1 Star 0 Fork 2

刘志强/TensorFlow-DirectML

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
build.py 11.45 KB
一键复制 编辑 原始数据 按行查看 历史
#!/usr/bin/env python
# Copyright (c) Microsoft Corporation. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Helper script to build tensorflow packages and tests."""
import os
import sys
import site
import argparse
import subprocess
import shutil
import configure as tf_configure
from pathlib import Path
# Returns the path to .tf_configure.bazelrc, which is generated using configure.py.
def tf_configure_path():
return os.path.join(
os.path.dirname(os.path.realpath(__file__)),
".tf_configure.bazelrc")
# Returns true if configure.py needs to be re-run, or the user has
# explicitly asked for clean build.
def needs_clean(args):
return args.clean or not os.path.isfile(tf_configure_path())
def clean(args):
if os.path.isfile(tf_configure_path()):
os.remove(tf_configure_path())
subprocess.run(
"bazel --output_user_root={} clean".format(args.build_output),
shell=True,
check=True)
def configure(args):
"""Runs configure.py with default options."""
os.environ["PYTHON_BIN_PATH"] = sys.executable
os.environ["PYTHON_LIB_PATH"] = site.getsitepackages()[-1]
os.environ["TF_ENABLE_XLA"] = "0"
os.environ["TF_NEED_ROCM"] = "0"
os.environ["TF_NEED_OPENCL_SYCL"] = "0"
os.environ["TF_NEED_MPI"] = "0"
os.environ["TF_DOWNLOAD_CLANG"] = "0"
os.environ["TF_SET_ANDROID_WORKSPACE"] = "0"
os.environ["TF_NEED_CUDA"] = "0"
# These defaults are just to suppress the interactive prompt and
# specific to platform. We should adjust these in the future.
if sys.platform == "win32":
os.environ["CC_OPT_FLAGS"] = "/arch:AVX"
elif sys.platform == "linux":
os.environ["CC_OPT_FLAGS"] = "-mavx"
# GCC doesn't support some of the MS extensions we rely on, such as __declspec(uuid(x)).
# Setting this var will switch over to building with Clang (still uses GNU C/C++ libs).
os.environ["TF_DOWNLOAD_CLANG"] = "1"
# Quicker builds but slower CPU kernels. Revisit in the future.
os.environ["TF_OVERRIDE_EIGEN_STRONG_INLINE"] = "1"
# Invoke configure.py, but strip the command-line args that are
# specific to dml_build.py (they will not be recognized and break).
prev_argv = sys.argv
sys.argv = [sys.argv[0]]
tf_configure.main()
sys.argv = prev_argv
def build_tests(args):
"""Builds the tests and their dependencies."""
absolute_dir = os.path.dirname(os.path.realpath(__file__))
absolute_test_prefix = os.path.join(absolute_dir, args.test_prefix)
os.mkdir(absolute_test_prefix)
symlink_path = os.path.join(absolute_test_prefix, "tensorflow")
symlink_target = os.path.join(absolute_dir, "tensorflow")
try:
# We need to create a symlink before building the tests. Otherwise, the
# folder that will be included in the tests' zip files will be named
# 'tensorflow', which will conflict when trying to import the real
# tensorflow module.
if os.name == "nt":
# os.symlink throws a PermissionError on Windows, even if the script is
# launched from an elevated prompt
subprocess.run(
["mklink", "/J", symlink_path, symlink_target],
shell=True,
check=True)
else:
os.symlink(symlink_target, symlink_path)
targets_and_tag_filters = [
(
"//{}/tensorflow/python/...".format(args.test_prefix),
[
"-tpu",
"-no_dml",
"-no_oss",
"-no_pip",
"-benchmark-test",
"-manual",
],
),
(
"//tensorflow/core/...",
[
"-tpu",
"-no_dml",
"-no_oss",
"-benchmark-test",
"-manual",
"dml",
],
),
(
"//tensorflow/c/...",
[
"-no_dml",
"-manual",
],
)
]
for _, tag_filters in targets_and_tag_filters:
if os.name == "nt":
tag_filters.append("-no_windows")
cl = ["bazel"]
cl.append("--output_user_root={}".format(args.build_output))
cl.append("build")
if args.subcommands:
cl.append("--subcommands")
cl.append("--config=opt")
cl.append("--config=dml")
if args.telemetry:
cl.append("--config=dml_telemetry")
cl.append("--test_lang_filters=py,cc")
cl.append("--verbose_failures")
cl.append("--build_tests_only")
cl.append("--define=no_tensorflow_py_deps=true")
if args.config == "debug":
cl.append("--strip never")
if args.config == "debug" and sys.platform == "win32":
cl.append("--copt /wd4716")
cl.append("--copt /Z7")
cl.append("--copt /FS")
cl.append("--linkopt /DEBUG:FASTLINK")
# This is necessary because of name clashes when bazel tries to copy 2 DLLs
# with the same name but different paths into the binary folder. This
# doesn't affect the python package, but it's required to reliably build the
# core tests.
# https://github.com/bazelbuild/bazel/issues/11515
if sys.platform == "win32":
cl.append("--dynamic_mode=off")
# For now, since we only want to run the core tests tagged as "dml", we need
# to run the command multiple times. Even though bazel allows multiple
# targets to be built from the same command, they will have the same
# filtered tags. We want to build ALL the python tests, and not only the
# ones tagged as "dml". The overhead should be very small since all the
# other parameters are the same.
for target, tag_filters in targets_and_tag_filters:
target_cl = cl.copy()
target_cl.append("--build_tag_filters={}".format(','.join(tag_filters)))
target_cl.append("--test_tag_filters={}".format(','.join(tag_filters)))
target_cl.append(target)
subprocess.run(" ".join(target_cl), shell=True, check=True)
finally:
if os.name == "nt":
# rmdir removes the symlink without deleting the files, as opposed to
# rmtree that deletes all the files
subprocess.run(
["rmdir", symlink_path],
shell=True,
check=True)
else:
os.unlink(symlink_path)
shutil.rmtree(absolute_test_prefix)
def build(args):
"""Runs bazel to build TensorFlow's build_pip_package target."""
cl = ["bazel"]
cl.append("--output_user_root={}".format(args.build_output))
cl.append("build")
if args.force_debug:
cl.append("-c dbg")
if args.subcommands:
cl.append("--subcommands")
cl.append("--config=opt")
cl.append("--config=dml")
if args.telemetry:
cl.append("--config=dml_telemetry")
if args.config == "debug":
cl.append("--strip never")
if args.config == "debug" and sys.platform == "win32":
cl.append("--copt /wd4716")
cl.append("--copt /Z7")
cl.append("--copt /FS")
cl.append("--linkopt /DEBUG:FASTLINK")
cl.append(args.target)
subprocess.run(" ".join(cl), shell=True, check=True)
def create_package(args):
"""
Creates an installable Python package from TensorFlow's build_pip_package
target.
"""
build_pip_package_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"bazel-bin",
"tensorflow",
"tools",
"pip_package",
"build_pip_package")
if sys.platform == "win32":
build_pip_package_path += ".exe"
# The build_pip_package target invokes a bash shell script that, among other things,
# copies files needed for the package to a temporary directory. On Windows the temp
# directory is somewhere in the msys2 environment, and we recently started to see
# strange permission issues with the temp directories created in this environment.
# The workaround is to prepare package sources in a fixed location on the host OS
# file system.
src_path = os.path.join(args.build_output, "python_package_src")
if os.path.exists(src_path):
shutil.rmtree(src_path)
dst_path = os.path.join(args.build_output, "python_package")
cl = [build_pip_package_path, "--src", src_path, "--dst", dst_path, "--directml"]
subprocess.run(
" ".join(cl),
shell=True,
check=True)
def install_package(args):
"""Installs the generated TensorFlow Python package."""
package_dir = os.path.join(args.build_output, "python_package")
# Find the most recently created package
package_path = sorted(Path(package_dir).iterdir(), key=os.path.getmtime)[-1].as_posix()
# Check if tensorflow is already installed
reqs = subprocess.check_output([sys.executable, '-m', 'pip', 'freeze'])
installed_packages = [r.decode().split('==')[0] for r in reqs.split()]
# Install the package
if "tensorflow-directml" in installed_packages:
subprocess.run(
["pip", "install", "--force-reinstall", "--no-deps", package_path],
check=True)
else:
subprocess.run(["pip", "install", package_path], check=True)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", "-c",
choices=("debug", "release"),
default="debug",
help="Build configuration.")
parser.add_argument(
"--clean", "-x",
action="store_true",
help="Configure and build from scratch.")
parser.add_argument(
"--package", "-p",
action="store_true",
help="Create Python package.")
parser.add_argument(
"--tests",
action="store_true",
help="Build tests.")
parser.add_argument(
"--test_prefix",
default="tfdml_test",
help="Prefix to use when creating a symlink to build the tests.")
parser.add_argument(
"--install", "-i",
action="store_true",
help="Install Python package using pip.")
parser.add_argument(
"--target", "-t",
default="//tensorflow/tools/pip_package:build_pip_package",
help="Bazel target to build.")
parser.add_argument(
"--subcommands", "-s",
action="store_true",
help="Display the subcommands executed during a build (e.g. compiler command line invocations).")
parser.add_argument(
"--force_debug", "-d",
action="store_true",
help="Build with dbg compilation mode. Useful for debugging individual targets on Linux (py package is too large).")
parser.add_argument(
"--telemetry",
action="store_true",
help="Allow builds to emit telemetry associated with the DMLTF client hint.")
# Default to storing build output under <repo_root>/../tfdml_build/.
default_build_output = os.path.join(
os.path.dirname(os.path.realpath(__file__)),
"..",
"dml_build")
parser.add_argument(
"--build_output", "-o",
default=default_build_output,
help="Build output path. Defaults to {}.".format(default_build_output))
args = parser.parse_args()
# Clean
if needs_clean(args):
clean(args)
# Configure
if not os.path.isfile(tf_configure_path()):
configure(args)
# Build
build(args)
# Create Python package
if args.package:
create_package(args)
if args.install:
install_package(args)
# Build the tests
if args.tests:
build_tests(args)
if __name__ == "__main__":
main()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C/C++
1
https://gitee.com/studygame/TensorFlow-DirectML.git
[email protected]:studygame/TensorFlow-DirectML.git
studygame
TensorFlow-DirectML
TensorFlow-DirectML
directml

搜索帮助