代码拉取完成,页面将自动刷新
同步操作将从 lilei/mindformers 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# Copyright 2024 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""convert weight."""
import argparse
import copy
import importlib
import torch
import mindspore as ms
dtype_map = {
'fp32': ms.float32,
'bf16': ms.bfloat16,
'fp16': ms.float16
}
reversed_dtype_map = {
'fp32': torch.float32,
'bf16': torch.bfloat16,
'fp16': torch.float16
}
convert_map = {
'llama': 'mindformers.models.llama.convert_weight.convert_pt_to_ms',
'glm': 'mindformers.models.glm.convert_weight.convert_pt_to_ms',
'glm-n': 'mindformers.models.glm2.convert_weight.convert_pt_to_ms',
'qwen': 'research.qwen.convert_weight.convert_pt_to_ms',
'internlm': 'research.internlm.convert_weight.convert_pt_to_ms',
'internlm2': 'research.internlm2.convert_weight.convert_pt_to_ms',
'baichuan': 'research.baichuan.convert_weight.convert_pt_to_ms',
'baichuan2': 'research.baichuan2.convert_weight.convert_pt_to_ms',
'gpt': 'mindformers.models.gpt2.convert_weight.convert_pt_to_ms',
'bloom': 'mindformers.models.bloom.convert_weight.convert_pt_to_ms',
'blip': 'mindformers.models.blip2.convert_weight.convert_pt_to_ms',
'wizardcoder': 'research.wizardcoder.convert_weight.convert_pt_to_ms',
'skywork': 'research.skywork.convert_weight.convert_pt_to_ms',
'mixtral': 'research.mixtral.convert_weight.convert_pt_to_ms',
'mae': 'mindformers.models.mae.convert_weight.convert_pt_to_ms',
'vit': 'mindformers.models.vit.convert_weight.convert_pt_to_ms',
'swin': 'mindformers.models.swin.convert_weight.convert_pt_to_ms',
'knowlm': 'research.knowlm.convert_weight.convert_pt_to_ms',
'telechat': 'research.telechat.convert_weight.convert_pt_to_ms',
'codegeex2': 'mindformers.models.codegeex2.convert_weight.convert_pt_to_ms',
'qwenvl': 'research.qwenvl.convert_weight.convert_pt_to_ms',
'yi': 'research.yi.convert_weight.convert_pt_to_ms',
'deepseek': 'research.deepseek.convert_weight.convert_pt_to_ms',
'qwen2': 'research.qwen2.convert_weight.convert_pt_to_ms',
'qwen2-moe': 'research.qwen2.convert_moe_weight.convert_pt_to_ms',
'cogvlm2': 'mindformers.models.cogvlm2.convert_weight.convert_pt_to_ms',
'llava': 'research.llava.convert_weight.convert_pt_to_ms',
"whisper": "mindformers.models.whisper.convert_weight.convert_pt_to_ms"
}
reversed_convert_map = {
'llama': 'mindformers.models.llama.convert_reversed.convert_ms_to_pt',
'glm': 'mindformers.models.glm.convert_reversed.convert_ms_to_pt',
'glm-n': 'mindformers.models.glm2.convert_reversed.convert_ms_to_pt',
'qwen': 'research.qwen.convert_reversed.convert_ms_to_pt',
'internlm': 'research.internlm.convert_reversed.convert_ms_to_pt',
'internlm2': 'research.internlm2.convert_reversed.convert_ms_to_pt',
'baichuan': 'research.baichuan.convert_reversed.convert_ms_to_pt',
'baichuan2': 'research.baichuan2.convert_reversed.convert_ms_to_pt',
'gpt': 'mindformers.models.gpt2.convert_reversed.convert_ms_to_pt',
'bloom': 'mindformers.models.bloom.convert_reversed.convert_ms_to_pt',
'blip': 'mindformers.models.blip2.convert_reversed.convert_ms_to_pt',
'wizardcoder': 'research.wizardcoder.convert_reversed.convert_ms_to_pt',
'skywork': 'research.skywork.convert_reversed.convert_ms_to_pt',
'mixtral': 'research.mixtral.convert_reversed.convert_ms_to_pt',
'mae': 'mindformers.models.mae.convert_reversed.convert_ms_to_pt',
'vit': 'mindformers.models.vit.convert_reversed.convert_ms_to_pt',
'swin': 'mindformers.models.swin.convert_reversed.convert_ms_to_pt',
'knowlm': 'research.knowlm.convert_reversed.convert_ms_to_pt',
'telechat': 'research.telechat.convert_reversed.convert_ms_to_pt',
'codegeex2': 'mindformers.models.codegeex2.convert_reversed.convert_ms_to_pt',
'yi': 'research.yi.convert_reversed.convert_ms_to_pt',
'deepseek': 'research.deepseek.convert_reversed.convert_ms_to_pt',
"whisper": "mindformers.models.whisper.convert_reversed.convert_ms_to_pt"
}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', default=None, required=True, help='model name')
parser.add_argument('--reversed', action='store_true', help="convert ms to hf")
parser.add_argument('--input_path', default=None, type=str, required=True)
parser.add_argument('--output_path', default=None, type=str, required=True)
parser.add_argument('--dtype', default=None, type=str, required=False)
parser.add_argument('--n_head', default=32, type=int, required=False,
help="Only for bloom, 16 for bloom_560m or 32 for bloom_7.1b")
parser.add_argument('--hidden_size', default=4096, type=int, required=False,
help="Only for bloom, 1024 for bloom_560m or 4096 for bloom_7.1b")
parser.add_argument('--layers', default=12, type=int, required=False,
help="Only for gpt2 and wizardcoder. "
"The number of layers of the model to be converted from hf to ms")
parser.add_argument('--is_pretrain', default=False, type=bool, required=False,
help="Only for swin. Convert pretrain model weight.")
parser.add_argument('--telechat_type', default="telechat_12b", type=str, required=False,
help="Only for telechat. Telechat version.")
args, extra_args = parser.parse_known_args()
extra_args = [i for item in extra_args for i in item.split("=")]
extra_kwargs = copy.copy(vars(args))
extra_kwargs.pop('model')
extra_kwargs.pop('reversed')
extra_kwargs.pop('input_path')
extra_kwargs.pop('output_path')
extra_kwargs.pop('dtype')
while extra_args:
key = extra_args.pop(0)
value = extra_args.pop(0)
if not key.startswith("--"):
raise ValueError("Custom config key need to start with --.")
extra_kwargs[key[2:]] = value
if args.reversed:
module_func = reversed_convert_map.get(args.model)
dtype = reversed_dtype_map.get(args.dtype)
else:
module_func = convert_map.get(args.model)
dtype = dtype_map.get(args.dtype)
if not module_func:
raise ValueError(f"Model:{args.model} is not supported!\nSupported Models:{','.join(convert_map.keys())}.")
if args.dtype and not dtype:
raise ValueError(f"Dtype:{args.dtype} is not supported!\nSupported Models:{','.join(dtype_map.keys())}.\n")
model_name, func_name = module_func.rsplit('.', 1)
convert_func = getattr(importlib.import_module(model_name), func_name)
convert_func(input_path=args.input_path, output_path=args.output_path, dtype=dtype, **extra_kwargs)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。