代码拉取完成,页面将自动刷新
同步操作将从 Ascend/MindSpeed-LLM 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
"""Pretrain GPT."""
import os
from functools import partial
from typing import Union
import torch
import modellink
from megatron.training import get_args
from megatron.training import print_rank_0
from megatron.training import get_timers
from megatron.training import get_tokenizer
from megatron.core import mpu, tensor_parallel
from megatron.core.enums import ModelType
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.gpt_dataset import GPTDatasetConfig
from megatron.core.datasets.gpt_dataset import MockGPTDataset, GPTDataset
import megatron.legacy.model
from megatron.core.models.gpt import GPTModel
from modellink.training import pretrain
from megatron.core.transformer.spec_utils import import_module
from megatron.training.utils import (
get_batch_on_this_cp_rank,
get_batch_on_this_tp_rank,
average_losses_across_data_parallel_group
)
from megatron.training.arguments import core_transformer_config_from_args
from megatron.training.yaml_arguments import core_transformer_config_from_yaml
from megatron.core.models.gpt.gpt_layer_specs import (
get_gpt_layer_local_spec,
get_gpt_layer_with_transformer_engine_spec,
)
from modellink.tasks.preprocess.decoder_packed_mtf_dataset import build_train_valid_test_datasets as build_instruction_dataset
from modellink.training.utils import get_tune_attention_mask, get_finetune_data_on_this_tp_rank, generate_actual_seq_len
def model_provider(pre_process=True, post_process=True) -> Union[GPTModel, megatron.legacy.model.GPTModel]:
"""Builds the model.
If you set the use_mcore_models to True, it will return the mcore GPT model and if not the legacy GPT model.
Args:
pre_process (bool, optional): Set to true if you need to compute embedings. Defaults to True.
post_process (bool, optional): Set to true if you need to want to compute output logits/loss. Defaults to True.
Returns:
Union[GPTModel, megatron.legacy.model.GPTModel]: The returned model
"""
args = get_args()
use_te = args.transformer_impl == "transformer_engine"
print_rank_0('building GPT model ...')
# Experimental loading arguments from yaml
if args.yaml_cfg is not None:
config = core_transformer_config_from_yaml(args, "language_model")
else:
config = core_transformer_config_from_args(args)
if args.use_mcore_models:
if args.spec is not None:
transformer_layer_spec = import_module(args.spec)
else:
if use_te:
transformer_layer_spec = get_gpt_layer_with_transformer_engine_spec(args.num_experts, args.moe_grouped_gemm)
else:
transformer_layer_spec = get_gpt_layer_local_spec(args.num_experts, args.moe_grouped_gemm)
model = GPTModel(
config=config,
transformer_layer_spec=transformer_layer_spec,
vocab_size=args.padded_vocab_size,
max_sequence_length=args.max_position_embeddings,
pre_process=pre_process,
post_process=post_process,
fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
parallel_output=True,
share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
position_embedding_type=args.position_embedding_type,
rotary_percent=args.rotary_percent,
seq_len_interpolation_factor=args.rotary_seq_len_interpolation_factor
)
else:
if not args.context_parallel_size == 1:
raise ValueError("Context parallelism is only supported with Megatron Core!")
model = megatron.legacy.model.GPTModel(
config,
num_tokentypes=0,
parallel_output=True,
pre_process=pre_process,
post_process=post_process
)
return model
def get_batch(data_iterator):
"""Generate a batch."""
args = get_args()
if args.is_instruction_dataset:
# Items and their type.
keys = ['input_ids', 'attention_mask', 'labels']
if args.reset_position_ids:
keys += ['position_ids']
data_type = torch.int64
if (not mpu.is_pipeline_first_stage()) and (not mpu.is_pipeline_last_stage()):
if args.variable_seq_lengths and args.pipeline_model_parallel_size > 2:
tokens, attention_mask = get_finetune_data_on_this_tp_rank(data_iterator)
return tokens, None, None, attention_mask, None
else:
if args.reset_position_ids:
# Broadcast data.
data_b = tensor_parallel.broadcast_data(keys, next(data_iterator), data_type)
generate_actual_seq_len(data_b)
return None, None, None, None, None
# Broadcast data.
data_b = tensor_parallel.broadcast_data(keys, next(data_iterator), data_type)
# Unpack
labels = data_b.get('labels').long()
tokens = data_b.get('input_ids').long()
attention_mask_1d = data_b.get('attention_mask').long()
# ignored label -100
loss_mask = torch.where(labels == -100, 0, 1)
if args.reset_position_ids:
position_ids = data_b.get('position_ids').long()
generate_actual_seq_len(data_b)
return tokens, labels, loss_mask, None, position_ids
attention_mask = get_tune_attention_mask(attention_mask_1d)
return tokens, labels, loss_mask, attention_mask, None
# get batches based on the TP rank you are on
batch = get_batch_on_this_tp_rank(data_iterator)
if args.reset_position_ids:
generate_actual_seq_len(batch)
# slice batch along sequence dimension for context parallelism
batch = get_batch_on_this_cp_rank(batch)
return batch.values()
def loss_func(loss_mask: torch.Tensor, output_tensor: torch.Tensor):
"""Loss function.
Args:
loss_mask (torch.Tensor): Used to mask out some portions of the loss
output_tensor (torch.Tensor): The tensor with the losses
"""
args = get_args()
losses = output_tensor.float()
if args.is_instruction_dataset:
loss_mask = loss_mask[..., 1:].view(-1).float()
else:
loss_mask = loss_mask.view(-1).float()
if args.context_parallel_size > 1:
loss = torch.cat([torch.sum(losses.view(-1) * loss_mask).view(1), loss_mask.sum().view(1)])
torch.distributed.all_reduce(loss, group=mpu.get_context_parallel_group())
loss = loss[0] / loss[1]
else:
loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
# Check individual rank losses are not NaN prior to DP all-reduce.
if args.check_for_nan_in_loss_and_grad:
global_rank = torch.distributed.get_rank()
if loss.isnan():
raise ValueError(f'Rank {global_rank}: found NaN in local forward loss calculation. '
f'Device: {torch.cuda.current_device()}, node: {os.uname()[1]}')
# Reduce loss for logging.
averaged_loss = average_losses_across_data_parallel_group([loss])
return loss * args.context_parallel_size, {'lm loss': averaged_loss[0]}
def forward_step(data_iterator, model: GPTModel):
"""Forward training step.
Args:
data_iterator : Input data iterator
model (GPTModel): The GPT Model
"""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch-generator', log_level=2).start()
tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
data_iterator)
timers('batch-generator').stop()
output_tensor = model(tokens, position_ids, attention_mask,
labels=labels)
return output_tensor, partial(loss_func, loss_mask)
def is_dataset_built_on_rank():
return mpu.get_tensor_model_parallel_rank() == 0
def core_gpt_dataset_config_from_args(args):
tokenizer = get_tokenizer()
return GPTDatasetConfig(
random_seed=args.seed,
sequence_length=args.seq_length,
blend=args.data_path,
blend_per_split=[args.train_data_path, args.valid_data_path, args.test_data_path],
split=args.split,
path_to_cache=args.data_cache_path,
mock=args.mock_data,
mmap_bin_files=args.mmap_bin_files,
tokenizer=tokenizer,
reset_position_ids=args.reset_position_ids,
reset_attention_mask=args.reset_attention_mask,
eod_mask_loss=args.eod_mask_loss,
create_attention_mask=args.create_attention_mask_in_dataloader,
)
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build the train test and validation datasets.
Args:
train_val_test_num_samples : A list containing the number of samples in train test and validation.
"""
args = get_args()
config = core_gpt_dataset_config_from_args(args)
if config.mock:
dataset_type = MockGPTDataset
else:
dataset_type = GPTDataset
print_rank_0("> building train, validation, and test datasets for GPT ...")
if args.is_instruction_dataset:
train_ds, valid_ds, test_ds = build_instruction_dataset(
data_prefix=args.data_path,
splits_string=args.split,
train_valid_test_num_samples=train_val_test_num_samples,
seq_length=args.seq_length,
seed=args.seed)
else:
train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
dataset_type,
train_val_test_num_samples,
is_dataset_built_on_rank,
config
).build()
print_rank_0("> finished creating GPT datasets ...")
return train_ds, valid_ds, test_ds
def main():
# Temporary for transition to core datasets
train_valid_test_datasets_provider.is_distributed = True
pretrain(train_valid_test_datasets_provider,
model_provider,
ModelType.encoder_or_decoder,
forward_step)
if __name__ == "__main__":
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。