代码拉取完成,页面将自动刷新
from open3d import linux as open3d
from os.path import join
import numpy as np
import colorsys, random, os, sys
import pandas as pd
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'utils'))
import cpp_wrappers.cpp_subsampling.grid_subsampling as cpp_subsampling
import nearest_neighbors.lib.python.nearest_neighbors as nearest_neighbors
class ConfigSemanticKITTI:
k_n = 16 # KNN
num_layers = 4 # Number of layers
num_points = 4096 * 11 # Number of input points
num_classes = 19 # Number of valid classes
sub_grid_size = 0.06 # preprocess_parameter
batch_size = 6 # batch_size during training
val_batch_size = 20 # batch_size during validation and test
train_steps = 500 # Number of steps per epochs
val_steps = 100 # Number of validation steps per epoch
sub_sampling_ratio = [4, 4, 4, 4] # sampling ratio of random sampling at each layer
d_out = [16, 64, 128, 256] # feature dimension
num_sub_points = [num_points // 4, num_points // 16, num_points // 64, num_points // 256]
noise_init = 3.5 # noise initial parameter
max_epoch = 100 # maximum epoch during training
learning_rate = 1e-2 # initial learning rate
lr_decays = {i: 0.95 for i in range(0, 500)} # decay rate of learning rate
train_sum_dir = 'train_log'
saving = True
saving_path = None
class ConfigS3DIS:
k_n = 16 # KNN
num_layers = 5 # Number of layers
num_points = 40960 # Number of input points
num_classes = 13 # Number of valid classes
sub_grid_size = 0.04 # preprocess_parameter
batch_size = 6 # batch_size during training
val_batch_size = 20 # batch_size during validation and test
train_steps = 500 # Number of steps per epochs
val_steps = 100 # Number of validation steps per epoch
sub_sampling_ratio = [4, 4, 4, 4, 2] # sampling ratio of random sampling at each layer
d_out = [16, 64, 128, 256, 512] # feature dimension
noise_init = 3.5 # noise initial parameter
max_epoch = 100 # maximum epoch during training
learning_rate = 1e-2 # initial learning rate
lr_decays = {i: 0.95 for i in range(0, 500)} # decay rate of learning rate
train_sum_dir = 'train_log'
saving = True
saving_path = None
class ConfigSemantic3D:
k_n = 16 # KNN
num_layers = 5 # Number of layers
num_points = 65536 # Number of input points
num_classes = 8 # Number of valid classes
sub_grid_size = 0.06 # preprocess_parameter
batch_size = 4 # batch_size during training
val_batch_size = 16 # batch_size during validation and test
train_steps = 500 # Number of steps per epochs
val_steps = 100 # Number of validation steps per epoch
sub_sampling_ratio = [4, 4, 4, 4, 2] # sampling ratio of random sampling at each layer
d_out = [16, 64, 128, 256, 512] # feature dimension
noise_init = 3.5 # noise initial parameter
max_epoch = 100 # maximum epoch during training
learning_rate = 1e-2 # initial learning rate
lr_decays = {i: 0.95 for i in range(0, 500)} # decay rate of learning rate
train_sum_dir = 'train_log'
saving = True
saving_path = None
augment_scale_anisotropic = True
augment_symmetries = [True, False, False]
augment_rotation = 'vertical'
augment_scale_min = 0.8
augment_scale_max = 1.2
augment_noise = 0.001
augment_occlusion = 'none'
augment_color = 0.8
class DataProcessing:
@staticmethod
def load_pc_semantic3d(filename):
pc_pd = pd.read_csv(filename, header=None, delim_whitespace=True, dtype=np.float16)
pc = pc_pd.values
return pc
@staticmethod
def load_label_semantic3d(filename):
label_pd = pd.read_csv(filename, header=None, delim_whitespace=True, dtype=np.uint8)
cloud_labels = label_pd.values
return cloud_labels
@staticmethod
def load_pc_kitti(pc_path):
scan = np.fromfile(pc_path, dtype=np.float32)
scan = scan.reshape((-1, 4))
points = scan[:, 0:3] # get xyz
return points
@staticmethod
def load_label_kitti(label_path, remap_lut):
label = np.fromfile(label_path, dtype=np.uint32)
label = label.reshape((-1))
sem_label = label & 0xFFFF # semantic label in lower half
inst_label = label >> 16 # instance id in upper half
assert ((sem_label + (inst_label << 16) == label).all())
sem_label = remap_lut[sem_label]
return sem_label.astype(np.int32)
@staticmethod
def get_file_list(dataset_path, test_scan_num):
seq_list = np.sort(os.listdir(dataset_path))
train_file_list = []
test_file_list = []
val_file_list = []
for seq_id in seq_list:
seq_path = join(dataset_path, seq_id)
pc_path = join(seq_path, 'velodyne')
if seq_id == '08':
val_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))])
if seq_id == test_scan_num:
test_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))])
elif int(seq_id) >= 11 and seq_id == test_scan_num:
test_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))])
elif seq_id in ['00', '01', '02', '03', '04', '05', '06', '07', '09', '10']:
train_file_list.append([join(pc_path, f) for f in np.sort(os.listdir(pc_path))])
train_file_list = np.concatenate(train_file_list, axis=0)
val_file_list = np.concatenate(val_file_list, axis=0)
test_file_list = np.concatenate(test_file_list, axis=0)
return train_file_list, val_file_list, test_file_list
@staticmethod
def knn_search(support_pts, query_pts, k):
"""
:param support_pts: points you have, B*N1*3
:param query_pts: points you want to know the neighbour index, B*N2*3
:param k: Number of neighbours in knn search
:return: neighbor_idx: neighboring points indexes, B*N2*k
"""
neighbor_idx = nearest_neighbors.knn_batch(support_pts, query_pts, k, omp=True)
return neighbor_idx.astype(np.int32)
@staticmethod
def data_aug(xyz, color, labels, idx, num_out):
num_in = len(xyz)
dup = np.random.choice(num_in, num_out - num_in)
xyz_dup = xyz[dup, ...]
xyz_aug = np.concatenate([xyz, xyz_dup], 0)
color_dup = color[dup, ...]
color_aug = np.concatenate([color, color_dup], 0)
idx_dup = list(range(num_in)) + list(dup)
idx_aug = idx[idx_dup]
label_aug = labels[idx_dup]
return xyz_aug, color_aug, idx_aug, label_aug
@staticmethod
def shuffle_idx(x):
# random shuffle the index
idx = np.arange(len(x))
np.random.shuffle(idx)
return x[idx]
@staticmethod
def shuffle_list(data_list):
indices = np.arange(np.shape(data_list)[0])
np.random.shuffle(indices)
data_list = data_list[indices]
return data_list
@staticmethod
def grid_sub_sampling(points, features=None, labels=None, grid_size=0.1, verbose=0):
"""
CPP wrapper for a grid sub_sampling (method = barycenter for points and features
:param points: (N, 3) matrix of input points
:param features: optional (N, d) matrix of features (floating number)
:param labels: optional (N,) matrix of integer labels
:param grid_size: parameter defining the size of grid voxels
:param verbose: 1 to display
:return: sub_sampled points, with features and/or labels depending of the input
"""
if (features is None) and (labels is None):
return cpp_subsampling.compute(points, sampleDl=grid_size, verbose=verbose)
elif labels is None:
return cpp_subsampling.compute(points, features=features, sampleDl=grid_size, verbose=verbose)
elif features is None:
return cpp_subsampling.compute(points, classes=labels, sampleDl=grid_size, verbose=verbose)
else:
return cpp_subsampling.compute(points, features=features, classes=labels, sampleDl=grid_size,
verbose=verbose)
@staticmethod
def IoU_from_confusions(confusions):
"""
Computes IoU from confusion matrices.
:param confusions: ([..., n_c, n_c] np.int32). Can be any dimension, the confusion matrices should be described by
the last axes. n_c = number of classes
:return: ([..., n_c] np.float32) IoU score
"""
# Compute TP, FP, FN. This assume that the second to last axis counts the truths (like the first axis of a
# confusion matrix), and that the last axis counts the predictions (like the second axis of a confusion matrix)
TP = np.diagonal(confusions, axis1=-2, axis2=-1)
TP_plus_FN = np.sum(confusions, axis=-1)
TP_plus_FP = np.sum(confusions, axis=-2)
# Compute IoU
IoU = TP / (TP_plus_FP + TP_plus_FN - TP + 1e-6)
# Compute mIoU with only the actual classes
mask = TP_plus_FN < 1e-3
counts = np.sum(1 - mask, axis=-1, keepdims=True)
mIoU = np.sum(IoU, axis=-1, keepdims=True) / (counts + 1e-6)
# If class is absent, place mIoU in place of 0 IoU to get the actual mean later
IoU += mask * mIoU
return IoU
@staticmethod
def get_class_weights(dataset_name):
# pre-calculate the number of points in each category
num_per_class = []
if dataset_name is 'S3DIS':
num_per_class = np.array([3370714, 2856755, 4919229, 318158, 375640, 478001, 974733,
650464, 791496, 88727, 1284130, 229758, 2272837], dtype=np.int32)
elif dataset_name is 'Semantic3D':
num_per_class = np.array([5181602, 5012952, 6830086, 1311528, 10476365, 946982, 334860, 269353],
dtype=np.int32)
elif dataset_name is 'SemanticKITTI':
num_per_class = np.array([55437630, 320797, 541736, 2578735, 3274484, 552662, 184064, 78858,
240942562, 17294618, 170599734, 6369672, 230413074, 101130274, 476491114,
9833174, 129609852, 4506626, 1168181])
weight = num_per_class / float(sum(num_per_class))
ce_label_weight = 1 / (weight + 0.02)
return np.expand_dims(ce_label_weight, axis=0)
class Plot:
@staticmethod
def random_colors(N, bright=True, seed=0):
brightness = 1.0 if bright else 0.7
hsv = [(0.15 + i / float(N), 1, brightness) for i in range(N)]
colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.seed(seed)
random.shuffle(colors)
return colors
@staticmethod
def draw_pc(pc_xyzrgb):
pc = open3d.PointCloud()
pc.points = open3d.Vector3dVector(pc_xyzrgb[:, 0:3])
if pc_xyzrgb.shape[1] == 3:
open3d.draw_geometries([pc])
return 0
if np.max(pc_xyzrgb[:, 3:6]) > 20: ## 0-255
pc.colors = open3d.Vector3dVector(pc_xyzrgb[:, 3:6] / 255.)
else:
pc.colors = open3d.Vector3dVector(pc_xyzrgb[:, 3:6])
open3d.draw_geometries([pc])
return 0
@staticmethod
def draw_pc_sem_ins(pc_xyz, pc_sem_ins, plot_colors=None):
"""
pc_xyz: 3D coordinates of point clouds
pc_sem_ins: semantic or instance labels
plot_colors: custom color list
"""
if plot_colors is not None:
ins_colors = plot_colors
else:
ins_colors = Plot.random_colors(len(np.unique(pc_sem_ins)) + 1, seed=2)
##############################
sem_ins_labels = np.unique(pc_sem_ins)
sem_ins_bbox = []
Y_colors = np.zeros((pc_sem_ins.shape[0], 3))
for id, semins in enumerate(sem_ins_labels):
valid_ind = np.argwhere(pc_sem_ins == semins)[:, 0]
if semins <= -1:
tp = [0, 0, 0]
else:
if plot_colors is not None:
tp = ins_colors[semins]
else:
tp = ins_colors[id]
Y_colors[valid_ind] = tp
### bbox
valid_xyz = pc_xyz[valid_ind]
xmin = np.min(valid_xyz[:, 0]);
xmax = np.max(valid_xyz[:, 0])
ymin = np.min(valid_xyz[:, 1]);
ymax = np.max(valid_xyz[:, 1])
zmin = np.min(valid_xyz[:, 2]);
zmax = np.max(valid_xyz[:, 2])
sem_ins_bbox.append(
[[xmin, ymin, zmin], [xmax, ymax, zmax], [min(tp[0], 1.), min(tp[1], 1.), min(tp[2], 1.)]])
Y_semins = np.concatenate([pc_xyz[:, 0:3], Y_colors], axis=-1)
Plot.draw_pc(Y_semins)
return Y_semins
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。