代码拉取完成,页面将自动刷新
同步操作将从 createskyblue/OpenT12 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#include "OpenT12.h"
double PTemp[FixNum] = { TempP1, TempP2, TempP3, TempP4 }; //温度拟合系数
long Calibration_Base[FixNum] = { 150, 200, 250, 300, 325 ,350, 375,400, 425,450 };
long Calibration_Input[FixNum] = { 0 };
//显示曲线系数
void ShowCurveCoefficient(void) {
Clear();
char buffer[50];
for (long i = 0;i < 4;i++) {
sprintf(buffer, "P[%d]=%.8f\n", i, PTemp[i]);
Disp.setCursor(12, i * 12 + 8);
Disp.print(buffer);
}
while (!sys_KeyProcess()) {
Display();
}
DrawTempCurve();
}
//绘制温度曲线
void DrawTempCurve(void) {
int x;
int count;
sys_Counter_Set(0, 63, 1, 0);
while (!sys_KeyProcess()) {
Clear();
count = sys_Counter_Get();
//绘制参考文字
char buffer[20];
sprintf(buffer, "ADC %d", count * 64);
DrawHighLightText(128 - Disp.getUTF8Width(buffer) - 2, 36, buffer);
sprintf(buffer, "温度 %.1lf", CalculateTemp(count * 64,PTemp));
DrawHighLightText(128 - Disp.getUTF8Width(buffer) - 2, 51, buffer);
//绘制曲线
Disp.setDrawColor(2);
for (int y = 0; y < 64; y++) {
x = map(CalculateTemp(y * 64, PTemp), 0, CalculateTemp(4095, PTemp) + 1, 0, 127);
Disp.drawPixel(x, 63 - y);
//画指示针
if (y == count)
Draw_Slow_Bitmap(x - 4, 63 - y -4,PositioningCursor, 8, 8);
}
Disp.setDrawColor(1);
//利用抖动产生灰度 绘制底部参考网格
if (DisplayFlashTick % 2)
for (int yy = 0; yy < 64; yy += 8)
for (int xx = 0; xx < 128; xx += 8) Disp.drawPixel(xx + 2, yy + 4);
Display();
}
}
//校准界面
void CalibrationTemperature(void) {
Pop_Windows("长按取消校准");
delay(1000);
//暂时解除菜单flag,安全机制在菜单开启的时候不允许加热
Menu_System_State = 0;
bool ExitCalibration_Flag = false;
uint8_t key=0;
char buffer[20];
int SetADC = 0;
int ADC,LastADC;
double TmpP[FixNum] = {0.0};
//暂时清除烙铁头不存在的错误状态:否则输出上锁
ERROREvent = false;
sys_Counter_Set(0, 4095, 1, (double)GetADC0());
// sys_Counter_Set(0, 4095, 1, 0);
for (uint8_t i = 0;i < FixNum;) {
Clear();
SetADC = (int)sys_Counter_Get();
ADC = GetADC0();
//加热
if (ADC!=-1) {
LastADC = ADC;
Log(LOG_INFO, "[校准]ADC获取成功");
if (LastADC < SetADC) SetPOWER(255);
else {
printf("%d >= %d\n", LastADC, SetADC);
SetPOWER(0);
}
}else Log(LOG_INFO,"ADC错误");
//绘制参考文字
sprintf(buffer, "目标 %ld|%.0lf°C", Calibration_Base[i], Calibration_Base[i] - GetNTCTemp());
DrawHighLightText(128 - Disp.getUTF8Width(buffer) - 2, 21, buffer);
sprintf(buffer, "设定ADC %d", SetADC);
DrawHighLightText(128 - Disp.getUTF8Width(buffer) - 2, 36, buffer);
sprintf(buffer, "采样ADC %d NTC %.0lf", LastADC, GetNTCTemp());
DrawHighLightText(128 - Disp.getUTF8Width(buffer) - 2, 51, buffer);
Disp.setDrawColor(2);
//绘制进度条
Disp.drawBox(0, 0, map(i, 0, FixNum-1,0,128),4);
//绘制曲线
uint8_t x;
for (int y = 0; y < 64; y++) {
x = map(CalculateTemp(y * 64, TmpP), 0, CalculateTemp(4095, TmpP) + 1, 0, 127);
Disp.drawPixel(x, 63 - y);
}
Disp.setDrawColor(1);
Display();
//处理按键
key = sys_KeyProcess();
switch(key) {
case 1:
case 3:
delay(50);
Calibration_Input[i] = SetADC;
polyfit(i + 1, Calibration_Input, Calibration_Base, 3, TmpP);
i++;
break;
case 2:
ExitCalibration_Flag = true;
i = 255;
break;
default:break;
}
}
//关闭功率管输出
SetPOWER(0);
//若中途退出,则不保存
if (!ExitCalibration_Flag) {
//进行曲线拟合
polyfit(FixNum, Calibration_Input, Calibration_Base, 3, PTemp);
Pop_Windows("曲线拟合完成!");
delay(800);
ShowCurveCoefficient();
//注意,这里的保存只是写入运行内存,而不是写入文件系统
SaveTipConfig();
}else{
Pop_Windows("取消校准");
delay(1000);
}
Menu_System_State = 1;
}
//********** 曲线拟合程序 **********
//曲线拟合算法来至https://blog.csdn.net/m0_37362454/article/details/82456616 by欧阳小俊
/*============================================================
高斯消元法计算得到 n 次多项式的系数
n: 系数的个数
ata: 线性矩阵
sumxy: 线性方程组的Y值
p: 返回拟合的结果
============================================================*/
void gauss_solve(long n, double A[], double x[], double b[])
{
long i, j, k, r;
double max;
for (k = 0; k < n - 1; k++)
{
max = fabs(A[k * n + k]); // find maxmum
r = k;
for (i = k + 1; i < n - 1; i++)
{
if (max < fabs(A[i * n + i]))
{
max = fabs(A[i * n + i]);
r = i;
}
}
if (r != k)
{
for (i = 0; i < n; i++) //change array:A[k]&A[r]
{
max = A[k * n + i];
A[k * n + i] = A[r * n + i];
A[r * n + i] = max;
}
max = b[k]; //change array:b[k]&b[r]
b[k] = b[r];
b[r] = max;
}
for (i = k + 1; i < n; i++)
{
for (j = k + 1; j < n; j++)
A[i * n + j] -= A[i * n + k] * A[k * n + j] / A[k * n + k];
b[i] -= A[i * n + k] * b[k] / A[k * n + k];
}
}
for (i = n - 1; i >= 0; x[i] /= A[i * n + i], i--)
{
for (j = i + 1, x[i] = b[i]; j < n; j++)
x[i] -= A[i * n + j] * x[j];
}
}
/*==================polyfit(n,x,y,poly_n,a)===================*/
/*=======拟合y=a0+a1*x+a2*x^2+……+apoly_n*x^poly_n========*/
/*=====n是数据个数 xy是数据值 poly_n是多项式的项数======*/
/*===返回a0,a1,a2,……a[poly_n],系数比项数多一(常数项)=====*/
void polyfit(long n, long x[], long y[], long poly_n, double p[])
{
long i, j;
double *tempx, *tempy, *sumxx, *sumxy, *ata;
tempx = (double *)calloc(n , sizeof(double));
sumxx = (double *)calloc((poly_n * 2 + 1) , sizeof(double));
tempy = (double *)calloc(n , sizeof(double));
sumxy = (double *)calloc((poly_n + 1) , sizeof(double));
ata = (double *)calloc( (poly_n + 1) * (poly_n + 1) , sizeof(double) );
for (i = 0; i < n; i++)
{
tempx[i] = 1;
tempy[i] = y[i];
}
for (i = 0; i < 2 * poly_n + 1; i++)
{
for (sumxx[i] = 0, j = 0; j < n; j++)
{
sumxx[i] += tempx[j];
tempx[j] *= x[j];
}
}
for (i = 0; i < poly_n + 1; i++)
{
for (sumxy[i] = 0, j = 0; j < n; j++)
{
sumxy[i] += tempy[j];
tempy[j] *= x[j];
}
}
for (i = 0; i < poly_n + 1; i++)
{
for (j = 0; j < poly_n + 1; j++)
{
ata[i * (poly_n + 1) + j] = sumxx[i + j];
}
}
gauss_solve(poly_n + 1, ata, p, sumxy);
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。