代码拉取完成,页面将自动刷新
1. extract_sc_for_dream.py, collect data for vae amd rnn.
2. vae_train_sc_dream.py, train vae.
3. series_sc_dream_1.py, use the trained vae to prepossing the data for rnn training.
4. rnn_train_sc_dream.py, train the rnn to generate rnn model and initial_z.
5. train_in_dream.py, use the rnn as a dream to train a policy.
6. eval_mini_srcgame_dream.py, test or train the policy on the real SC2.
for an iterative process, continue from step 1, and add '_X' to represent the file.
X means the number of iteration, from 1 to n.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。