代码拉取完成,页面将自动刷新
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
USED_DEVICES = "-1"
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = USED_DEVICES
import sys
import threading
import time
import tensorflow as tf
import multiprocessing as mp
import numpy as np
from logging import warning as logging
from datetime import datetime
from mini_network import MiniNetwork
from mini_agent import MiniAgent
from strategy.terran_agent import DummyTerran
from unit.units import Army
from lib.replay_buffer import Buffer
from strategy_env import SimulatePlatform
from absl import app
from absl import flags
import unit.protoss_unit as P
import unit.terran_unit as T
FLAGS = flags.FLAGS
flags.DEFINE_string("restore_model_path", "./model/20190121-210229_mini/", "path for restore model")
flags.DEFINE_bool("restore_model", False, "Whether to restore old model")
flags.DEFINE_integer("num_for_update", 500, "How many episodes for one iteration")
flags.DEFINE_integer("parallel", 10, "How many process to run, debug set to 1, training set to 10")
flags.DEFINE_integer("thread_num", 10, "How many threads in one process, debug set to 1, training set to 5")
flags.DEFINE_integer("port_num", 5370, "Port number for distribute training in tensorflow")
flags.DEFINE_integer("train_iters", 50, "How many iterations for one training")
flags.DEFINE_integer("initial_diff", 1, "The start level of opponent in mind-game")
flags.DEFINE_float("win_rate_threshold", 0.95, "If win_rate exceeds this value, opponent level increase one")
flags.DEFINE_bool("show_details", False, "Weather to show details of one mind-game, debug set to True, training set to False")
FLAGS(sys.argv)
# define some global variable
UPDATE_EVENT, ROLLING_EVENT = threading.Event(), threading.Event()
Counter = 0
Waiting_Counter = 0
Update_Counter = 0
Result_List = []
SERVER_DICT = {"worker": [], "ps": []}
NUM_FOR_UPDATE = FLAGS.num_for_update
PARALLEL = FLAGS.parallel
THREAD_NUM = FLAGS.thread_num
PORT_NUM = FLAGS.port_num
TRAIN_ITERS = FLAGS.train_iters
INITIAL_DIFF = FLAGS.initial_diff
WIN_RATE_THRESHOLD = FLAGS.win_rate_threshold
SHOW_DETAILS = FLAGS.show_details
def run_thread(agent, game_num, Synchronizer, difficulty):
global UPDATE_EVENT, ROLLING_EVENT, Counter, Waiting_Counter, Update_Counter, Result_List
num = 0
proc_name = mp.current_process().name
blue_agent = DummyTerran(diff=difficulty)
blue_agent.get_power()
env = SimulatePlatform(red_agent=agent, blue_agent=blue_agent,
distance=5, max_steps=100)
env.init()
agent.set_env(env)
while True:
env.simulate(SHOW_DETAILS)
if True:
# check if the num of episodes is enough to update
num += 1
Counter += 1
reward = agent.result
Result_List.append(reward)
logging("(diff: %d) %d epoch: %s get %d/%d episodes! return: %f!" %
(int(difficulty), Update_Counter, proc_name, len(Result_List), game_num * THREAD_NUM, reward))
# time for update
if num == game_num:
num = 0
ROLLING_EVENT.clear()
# worker stops rolling, wait for update
if agent.agent_id != 0 and THREAD_NUM > 1:
Waiting_Counter += 1
if Waiting_Counter == THREAD_NUM - 1: # wait for all the workers stop
UPDATE_EVENT.set()
ROLLING_EVENT.wait()
# update!
else:
if THREAD_NUM > 1:
UPDATE_EVENT.wait()
Synchronizer.wait() # wait for other processes to update
agent.update_network(Result_List)
Result_List.clear()
agent.global_buffer.reset()
Synchronizer.wait()
Update_Counter += 1
# finish update
UPDATE_EVENT.clear()
Waiting_Counter = 0
ROLLING_EVENT.set()
win_rate = agent.net.get_win_rate()
if win_rate > WIN_RATE_THRESHOLD:
difficulty += 1
env.blue_agent.set_diff(difficulty)
print('Increase difficulty to:', difficulty)
env.reset()
def Worker(index, update_game_num, Synchronizer, cluster, model_path):
config = tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False,
)
config.gpu_options.allow_growth = True
worker = tf.train.Server(cluster, job_name="worker", task_index=index, config=config)
#config.gpu_options.per_process_gpu_memory_fraction = 0.2
sess = tf.Session(target=worker.target, config=config)
mini_net = MiniNetwork(sess, index=index, summary_writer=None, rl_training=True, cluster=cluster,
ppo_load_path=FLAGS.restore_model_path, ppo_save_path=model_path)
global_buffer = Buffer()
agents = []
for i in range(THREAD_NUM):
agent = MiniAgent(agent_id=i, global_buffer=global_buffer, net=mini_net, restore_model=FLAGS.restore_model)
agents.append(agent)
print("Worker %d: waiting for cluster connection..." % index)
sess.run(tf.report_uninitialized_variables())
print("Worker %d: cluster ready!" % index)
while len(sess.run(tf.report_uninitialized_variables())):
print("Worker %d: waiting for variable initialization..." % index)
time.sleep(1)
print("Worker %d: variables initialized" % index)
game_num = np.ceil(update_game_num // THREAD_NUM)
UPDATE_EVENT.clear()
ROLLING_EVENT.set()
difficulty = INITIAL_DIFF
# Run threads
threads = []
for i in range(THREAD_NUM - 1):
t = threading.Thread(target=run_thread, args=(agents[i], game_num, Synchronizer, difficulty))
threads.append(t)
t.daemon = True
t.start()
time.sleep(3)
run_thread(agents[-1], game_num, Synchronizer, difficulty)
for t in threads:
t.join()
def Parameter_Server(Synchronizer, cluster, log_path, model_path, procs):
config = tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False,
)
config.gpu_options.allow_growth = True
server = tf.train.Server(cluster, job_name="ps", task_index=0, config=config)
#config.gpu_options.per_process_gpu_memory_fraction = 0.2
sess = tf.Session(target=server.target, config=config)
summary_writer = tf.summary.FileWriter(log_path)
mini_net = MiniNetwork(sess, index=0, summary_writer=summary_writer, rl_training=True, cluster=cluster,
ppo_load_path=FLAGS.restore_model_path, ppo_save_path=model_path)
agent = MiniAgent(agent_id=-1, global_buffer=Buffer(), net=mini_net, restore_model=FLAGS.restore_model)
print("Parameter server: waiting for cluster connection...")
sess.run(tf.report_uninitialized_variables())
print("Parameter server: cluster ready!")
print("Parameter server: initializing variables...")
agent.init_network()
print("Parameter server: variables initialized")
last_win_rate = 0.
update_counter = 0
while update_counter <= TRAIN_ITERS:
agent.reset_old_network()
# wait for update
Synchronizer.wait()
logging("Update Network!")
# TODO count the time , compare cpu and gpu
time.sleep(1)
# update finish
Synchronizer.wait()
logging("Update Network finished!")
steps, win_rate = agent.update_summary(update_counter)
logging("Steps: %d, win rate: %f" % (steps, win_rate))
update_counter += 1
if win_rate >= last_win_rate:
agent.save_model()
last_win_rate = win_rate
for p in procs:
print('Process terminate')
p.terminate()
if __name__ == "__main__":
# create distribute tf cluster
start_port = PORT_NUM
SERVER_DICT["ps"].append("localhost:%d" % start_port)
for i in range(PARALLEL):
SERVER_DICT["worker"].append("localhost:%d" % (start_port + 1 + i))
Cluster = tf.train.ClusterSpec(SERVER_DICT)
now = datetime.now()
model_path = "./model/" + now.strftime("%Y%m%d-%H%M%S") + "_mini/"
if not os.path.exists(model_path):
os.makedirs(model_path)
LOG = "./logs/" + now.strftime("%Y%m%d-%H%M%S") + "_mini/"
UPDATE_GAME_NUM = NUM_FOR_UPDATE
per_update_num = np.ceil(UPDATE_GAME_NUM / PARALLEL)
Synchronizer = mp.Barrier(PARALLEL + 1)
# Run parallel process
procs = []
for index in range(PARALLEL):
p = mp.Process(name="Worker_%d" % index, target=Worker, args=(index, per_update_num, Synchronizer, Cluster, model_path))
procs.append(p)
p.daemon = True
p.start()
time.sleep(1)
Parameter_Server(Synchronizer, Cluster, LOG, model_path, procs)
for p in procs:
print('Process join')
p.join()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。