1 Star 1 Fork 0

liuruoze/Thought-SC2

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
eval_mini_srcgame_add_map.py 12.85 KB
一键复制 编辑 原始数据 按行查看 历史
liuruoze 提交于 2020-09-17 09:31 . * first commit
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
USED_DEVICES = "0,1"
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = USED_DEVICES
import sys
import threading
import time
import tensorflow as tf
from absl import app
from absl import flags
from pysc2 import maps
from pysc2.lib import stopwatch
import lib.config as C
import param as P
import mini_source_agent_add_map as mini_source_agent
from mini_network_add_map import MiniNetwork
# from pysc2.env import sc2_env
from lib import my_sc2_env as sc2_env
from lib.replay_buffer import Buffer
from strategy.terran_agent import DummyTerran
from strategy_env import SimulatePlatform
import unit.protoss_unit as P
import unit.terran_unit as T
from datetime import datetime
import multiprocessing as mp
import numpy as np
from logging import warning as logging
FLAGS = flags.FLAGS
flags.DEFINE_bool("training", True, "Whether to train agents.")
flags.DEFINE_bool("on_server", True, "Whether is running on server.")
flags.DEFINE_bool("debug_mode", False, "Whether is debuging")
flags.DEFINE_integer("num_for_update", 100, "Number of episodes for each train.")
flags.DEFINE_string("log_path", "./logs/", "Path for log.")
flags.DEFINE_string("device", USED_DEVICES, "Device for training.")
# Simple64
flags.DEFINE_string("map", "Simple64", "Name of a map to use.")
flags.DEFINE_bool("render", False, "Whether to render with pygame.")
flags.DEFINE_integer("screen_resolution", 64, "Resolution for screen feature layers.")
flags.DEFINE_integer("minimap_resolution", 64, "Resolution for minimap feature layers.")
flags.DEFINE_enum("agent_race", "P", sc2_env.races.keys(), "Agent's race.")
flags.DEFINE_enum("bot_race", "T", sc2_env.races.keys(), "Bot's race.")
flags.DEFINE_enum("difficulty", "7", sc2_env.difficulties.keys(), "Bot's strength.")
flags.DEFINE_integer("max_agent_steps", 18000, "Total agent steps.")
flags.DEFINE_integer("step_mul", 8, "Game steps per agent step.")
flags.DEFINE_bool("profile", False, "Whether to turn on code profiling.")
flags.DEFINE_bool("trace", False, "Whether to trace the code execution.")
flags.DEFINE_bool("save_replay", False, "Whether to replays_save a replay at the end.")
flags.DEFINE_string("replay_dir", "multi-agent/", "dir of replay to replays_save.")
flags.DEFINE_string("restore_model_path", "./model/20190121-212908_mini/", "path for restore model")
flags.DEFINE_bool("restore_model", True, "Whether to restore old model")
flags.DEFINE_integer("parallel", 10, "How many processes to run in parallel.")
flags.DEFINE_integer("thread_num", 5, "How many thread to run in the process.")
flags.DEFINE_integer("port_num", 5270, "the start port to create distribute tf")
flags.DEFINE_integer("max_iters", 100, "the rl agent max run iters")
flags.DEFINE_string("game_version", None, "game version of SC2")
flags.DEFINE_bool("freeze_head", False, "Whether freeze_head train agents.")
flags.DEFINE_integer("ob_space_add", 4, "Add state space from thought game.")
flags.DEFINE_integer("act_space_add", 5, "Add action space from thought game.")
FLAGS(sys.argv)
# set the play map
play_map = C.get_map_class('lib.config.' + FLAGS.map)
C.my_sub_pos = play_map.my_sub_pos
C.enemy_sub_pos = play_map.enemy_sub_pos
C.enemy_main_pos = play_map.enemy_main_pos
C.base_camera_pos = play_map.base_camera_pos
if not FLAGS.on_server or FLAGS.debug_mode:
PARALLEL = 1
THREAD_NUM = 1
MAX_AGENT_STEPS = 18000
DEVICE = ['/gpu:0']
NUM_FOR_UPDATE = 1
TRAIN_ITERS = 1
PORT_NUM = FLAGS.port_num
else:
PARALLEL = FLAGS.parallel
THREAD_NUM = FLAGS.thread_num
MAX_AGENT_STEPS = FLAGS.max_agent_steps
if USED_DEVICES == '-1':
DEVICE = ['/cpu:0']
else:
DEVICE = ['/gpu:' + str(dev) for dev in range(len(FLAGS.device.split(',')))]
NUM_FOR_UPDATE = FLAGS.num_for_update
TRAIN_ITERS = FLAGS.max_iters
PORT_NUM = FLAGS.port_num
LOG = FLAGS.log_path
if not os.path.exists(LOG):
os.makedirs(LOG)
SERVER_DICT = {"worker": [], "ps": []}
# define some global variable
UPDATE_EVENT, ROLLING_EVENT = threading.Event(), threading.Event()
Counter = 0
Waiting_Counter = 0
Update_Counter = 0
Result_List = []
# nohup python eval_mini_srcgame.py > no_action_set_add.out &
# nohup python eval_mini_srcgame.py > action_set_add.out &
# ps -ef |grep liuruoze | grep 'SC2_x64' | awk '{print $2}' | xargs kill -9
# nohup python main.py > result.out &
# kill -9 `ps -ef |grep liuruoze | grep python3 | awk '{print $2}' `
# kill -9 `ps -ef |grep liuruoze | grep eval_mini_srcgame_add_map | awk '{print $2}' `
# kill -9 `ps -ef |grep liuruoze | grep eval_mini_srcgame_worldmodel | awk '{print $2}' `
# kill -9 `ps -ef |grep lrz | grep main.py | awk '{print $2}' `
# ps -ef |grep pangzhj | grep 'main.py'
# ps -ef | grep liuruoze | grep -v sshd
# export -n http_proxy
# export -n https_proxy
# kill -9 `ps -ef |grep liuruoze | awk '{print $2}' `
# kill -9 `ps -ef |grep liuruoze | grep test_prototype.py | awk '{print $2}' `
# kill -9 `ps -ef |grep lrz | grep main.py | awk '{print $2}' `
# fuser -v /dev/nvidia*
def run_thread(agent, game_num, Synchronizer, difficulty):
global UPDATE_EVENT, ROLLING_EVENT, Counter, Waiting_Counter, Update_Counter, Result_List
num = 0
all_num = 0
proc_name = mp.current_process().name
C._FPS = 22.4 / FLAGS.step_mul # 5.6
step_mul = FLAGS.step_mul # 4
C.difficulty = difficulty
with sc2_env.SC2Env(
map_name=FLAGS.map,
agent_race=FLAGS.agent_race,
bot_race=FLAGS.bot_race,
difficulty=difficulty,
step_mul=step_mul,
score_index=-1,
game_steps_per_episode=MAX_AGENT_STEPS,
screen_size_px=(FLAGS.screen_resolution, FLAGS.screen_resolution),
minimap_size_px=(FLAGS.minimap_resolution, FLAGS.minimap_resolution),
visualize=False,
game_version=FLAGS.game_version) as env:
# env = available_actions_printer.AvailableActionsPrinter(env)
agent.set_env(env)
while all_num != game_num * TRAIN_ITERS:
agent.play_right_add(verbose=FLAGS.debug_mode)
if FLAGS.training:
# check if the num of episodes is enough to update
num += 1
all_num += 1
reward = agent.result['reward']
Counter += 1
Result_List.append(reward)
logging("(diff: %d) %d epoch: %s get %d/%d episodes! return: %d!" %
(int(difficulty), Update_Counter, proc_name, len(Result_List), game_num * THREAD_NUM, reward))
# time for update
if num == game_num:
num = 0
ROLLING_EVENT.clear()
# worker stops rolling, wait for update
if agent.index != 0 and THREAD_NUM > 1:
Waiting_Counter += 1
if Waiting_Counter == THREAD_NUM - 1: # wait for all the workers stop
UPDATE_EVENT.set()
ROLLING_EVENT.wait()
# update!
else:
if THREAD_NUM > 1:
UPDATE_EVENT.wait()
Synchronizer.wait() # wait for other processes to update
agent.update_network(Result_List)
Result_List.clear()
agent.global_buffer.reset()
Synchronizer.wait()
Update_Counter += 1
# finish update
UPDATE_EVENT.clear()
Waiting_Counter = 0
ROLLING_EVENT.set()
if FLAGS.save_replay:
env.save_replay(FLAGS.replay_dir)
agent.reset()
def Worker(index, update_game_num, Synchronizer, cluster, model_path):
config = tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False,
)
config.gpu_options.allow_growth = True
worker = tf.train.Server(cluster, job_name="worker", task_index=index, config=config)
sess = tf.Session(target=worker.target, config=config)
Net = MiniNetwork(sess=sess, summary_writer=None, rl_training=FLAGS.training,
cluster=cluster, index=index, device=DEVICE[index % len(DEVICE)],
ppo_load_path=FLAGS.restore_model_path, ppo_save_path=model_path,
ob_space_add=FLAGS.ob_space_add, act_space_add=FLAGS.act_space_add, freeze_head=FLAGS.freeze_head)
global_buffer = Buffer()
agents = []
for i in range(THREAD_NUM):
agent = mini_source_agent.MiniSourceAgent(index=i, global_buffer=global_buffer, net=Net,
restore_model=FLAGS.restore_model, rl_training=FLAGS.training,
strategy_agent=None)
agents.append(agent)
print("Worker %d: waiting for cluster connection..." % index)
sess.run(tf.report_uninitialized_variables())
print("Worker %d: cluster ready!" % index)
while len(sess.run(tf.report_uninitialized_variables())):
print("Worker %d: waiting for variable initialization..." % index)
time.sleep(1)
print("Worker %d: variables initialized" % index)
game_num = np.ceil(update_game_num // THREAD_NUM)
UPDATE_EVENT.clear()
ROLLING_EVENT.set()
# Run threads
threads = []
for i in range(THREAD_NUM - 1):
t = threading.Thread(target=run_thread, args=(agents[i], game_num, Synchronizer, FLAGS.difficulty))
threads.append(t)
t.daemon = True
t.start()
time.sleep(3)
run_thread(agents[-1], game_num, Synchronizer, FLAGS.difficulty)
for t in threads:
t.join()
def Parameter_Server(Synchronizer, cluster, log_path, model_path, procs):
config = tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False,
)
config.gpu_options.allow_growth = True
server = tf.train.Server(cluster, job_name="ps", task_index=0, config=config)
sess = tf.Session(target=server.target, config=config)
summary_writer = tf.summary.FileWriter(log_path)
Net = MiniNetwork(sess=sess, summary_writer=summary_writer, rl_training=FLAGS.training,
cluster=cluster, index=0, device=DEVICE[0 % len(DEVICE)],
ppo_load_path=FLAGS.restore_model_path, ppo_save_path=model_path,
ob_space_add=FLAGS.ob_space_add, act_space_add=FLAGS.act_space_add, freeze_head=FLAGS.freeze_head)
agent = mini_source_agent.MiniSourceAgent(index=-1, net=Net, restore_model=FLAGS.restore_model, rl_training=FLAGS.training)
print("Parameter server: waiting for cluster connection...")
sess.run(tf.report_uninitialized_variables())
print("Parameter server: cluster ready!")
print("Parameter server: initializing variables...")
agent.init_network()
print("Parameter server: variables initialized")
update_counter = 0
max_win_rate = 0.
while update_counter < TRAIN_ITERS:
agent.reset_old_network()
# wait for update
Synchronizer.wait()
logging("Update Network!")
# TODO count the time , compare cpu and gpu
time.sleep(1)
# update finish
Synchronizer.wait()
logging("Update Network finished!")
steps, win_rate = agent.update_summary(update_counter)
logging("Steps: %d, win rate: %f" % (steps, win_rate))
update_counter += 1
if win_rate >= max_win_rate:
agent.save_model()
max_win_rate = win_rate
return max_win_rate
def _main(unused_argv):
# create distribute tf cluster
start_port = PORT_NUM
SERVER_DICT["ps"].append("localhost:%d" % start_port)
for i in range(PARALLEL):
SERVER_DICT["worker"].append("localhost:%d" % (start_port + 1 + i))
Cluster = tf.train.ClusterSpec(SERVER_DICT)
now = datetime.now()
model_path = "./model/" + now.strftime("%Y%m%d-%H%M%S") + "_source/"
if not os.path.exists(model_path):
os.makedirs(model_path)
log_path = "./logs/" + now.strftime("%Y%m%d-%H%M%S") + "_source/"
UPDATE_GAME_NUM = NUM_FOR_UPDATE
per_update_num = np.ceil(UPDATE_GAME_NUM / PARALLEL)
Synchronizer = mp.Barrier(PARALLEL + 1)
# Run parallel process
procs = []
for index in range(PARALLEL):
p = mp.Process(name="Worker_%d" % index, target=Worker, args=(index, per_update_num, Synchronizer, Cluster, model_path))
procs.append(p)
p.daemon = True
p.start()
time.sleep(1)
win_rate = Parameter_Server(Synchronizer, Cluster, log_path, model_path, procs)
print('#######################')
print('Final Win_rate:', win_rate)
print('#######################')
for p in procs:
p.join()
'''
if FLAGS.profile:
print(stopwatch.sw)
'''
if __name__ == "__main__":
app.run(_main)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/liuruoze/Thought-SC2.git
[email protected]:liuruoze/Thought-SC2.git
liuruoze
Thought-SC2
Thought-SC2
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385