1 Star 0 Fork 7

刘智勇/pyfolio

forked from 云金杞/pyfolio 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
capacity.py 9.33 KB
一键复制 编辑 原始数据 按行查看 历史
from __future__ import division
import empyrical as ep
import numpy as np
import pandas as pd
from . import pos
def daily_txns_with_bar_data(transactions, market_data):
"""
Sums the absolute value of shares traded in each name on each day.
Adds columns containing the closing price and total daily volume for
each day-ticker combination.
Parameters
----------
transactions : pd.DataFrame
Prices and amounts of executed trades. One row per trade.
- See full explanation in tears.create_full_tear_sheet
market_data : pd.Panel
Contains "volume" and "price" DataFrames for the tickers
in the passed positions DataFrames
Returns
-------
txn_daily : pd.DataFrame
Daily totals for transacted shares in each traded name.
price and volume columns for close price and daily volume for
the corresponding ticker, respectively.
"""
transactions.index.name = 'date'
txn_daily = pd.DataFrame(transactions.assign(
amount=abs(transactions.amount)).groupby(
['symbol', pd.TimeGrouper('D')]).sum()['amount'])
txn_daily['price'] = market_data['price'].unstack()
txn_daily['volume'] = market_data['volume'].unstack()
txn_daily = txn_daily.reset_index().set_index('date')
return txn_daily
def days_to_liquidate_positions(positions, market_data,
max_bar_consumption=0.2,
capital_base=1e6,
mean_volume_window=5):
"""
Compute the number of days that would have been required
to fully liquidate each position on each day based on the
trailing n day mean daily bar volume and a limit on the proportion
of a daily bar that we are allowed to consume.
This analysis uses portfolio allocations and a provided capital base
rather than the dollar values in the positions DataFrame to remove the
effect of compounding on days to liquidate. In other words, this function
assumes that the net liquidation portfolio value will always remain
constant at capital_base.
Parameters
----------
positions: pd.DataFrame
Contains daily position values including cash
- See full explanation in tears.create_full_tear_sheet
market_data : pd.Panel
Panel with items axis of 'price' and 'volume' DataFrames.
The major and minor axes should match those of the
the passed positions DataFrame (same dates and symbols).
max_bar_consumption : float
Max proportion of a daily bar that can be consumed in the
process of liquidating a position.
capital_base : integer
Capital base multiplied by portfolio allocation to compute
position value that needs liquidating.
mean_volume_window : float
Trailing window to use in mean volume calculation.
Returns
-------
days_to_liquidate : pd.DataFrame
Number of days required to fully liquidate daily positions.
Datetime index, symbols as columns.
"""
DV = market_data['volume'] * market_data['price']
roll_mean_dv = DV.rolling(window=mean_volume_window,
center=False).mean().shift()
roll_mean_dv = roll_mean_dv.replace(0, np.nan)
positions_alloc = pos.get_percent_alloc(positions)
positions_alloc = positions_alloc.drop('cash', axis=1)
days_to_liquidate = (positions_alloc * capital_base) / \
(max_bar_consumption * roll_mean_dv)
return days_to_liquidate.iloc[mean_volume_window:]
def get_max_days_to_liquidate_by_ticker(positions, market_data,
max_bar_consumption=0.2,
capital_base=1e6,
mean_volume_window=5,
last_n_days=None):
"""
Finds the longest estimated liquidation time for each traded
name over the course of backtest (or last n days of the backtest).
Parameters
----------
positions: pd.DataFrame
Contains daily position values including cash
- See full explanation in tears.create_full_tear_sheet
market_data : pd.Panel
Panel with items axis of 'price' and 'volume' DataFrames.
The major and minor axes should match those of the
the passed positions DataFrame (same dates and symbols).
max_bar_consumption : float
Max proportion of a daily bar that can be consumed in the
process of liquidating a position.
capital_base : integer
Capital base multiplied by portfolio allocation to compute
position value that needs liquidating.
mean_volume_window : float
Trailing window to use in mean volume calculation.
last_n_days : integer
Compute for only the last n days of the passed backtest data.
Returns
-------
days_to_liquidate : pd.DataFrame
Max Number of days required to fully liquidate each traded name.
Index of symbols. Columns for days_to_liquidate and the corresponding
date and position_alloc on that day.
"""
dtlp = days_to_liquidate_positions(positions, market_data,
max_bar_consumption=max_bar_consumption,
capital_base=capital_base,
mean_volume_window=mean_volume_window)
if last_n_days is not None:
dtlp = dtlp.loc[dtlp.index.max() - pd.Timedelta(days=last_n_days):]
pos_alloc = pos.get_percent_alloc(positions)
pos_alloc = pos_alloc.drop('cash', axis=1)
liq_desc = pd.DataFrame()
liq_desc['days_to_liquidate'] = dtlp.unstack()
liq_desc['pos_alloc_pct'] = pos_alloc.unstack() * 100
liq_desc.index.levels[0].name = 'symbol'
liq_desc.index.levels[1].name = 'date'
worst_liq = liq_desc.reset_index().sort_values(
'days_to_liquidate', ascending=False).groupby('symbol').first()
return worst_liq
def get_low_liquidity_transactions(transactions, market_data,
last_n_days=None):
"""
For each traded name, find the daily transaction total that consumed
the greatest proportion of available daily bar volume.
Parameters
----------
transactions : pd.DataFrame
Prices and amounts of executed trades. One row per trade.
- See full explanation in create_full_tear_sheet.
market_data : pd.Panel
Panel with items axis of 'price' and 'volume' DataFrames.
The major and minor axes should match those of the
the passed positions DataFrame (same dates and symbols).
last_n_days : integer
Compute for only the last n days of the passed backtest data.
"""
txn_daily_w_bar = daily_txns_with_bar_data(transactions, market_data)
txn_daily_w_bar.index.name = 'date'
txn_daily_w_bar = txn_daily_w_bar.reset_index()
if last_n_days is not None:
md = txn_daily_w_bar.date.max() - pd.Timedelta(days=last_n_days)
txn_daily_w_bar = txn_daily_w_bar[txn_daily_w_bar.date > md]
bar_consumption = txn_daily_w_bar.assign(
max_pct_bar_consumed=(
txn_daily_w_bar.amount/txn_daily_w_bar.volume)*100
).sort_values('max_pct_bar_consumed', ascending=False)
max_bar_consumption = bar_consumption.groupby('symbol').first()
return max_bar_consumption[['date', 'max_pct_bar_consumed']]
def apply_slippage_penalty(returns, txn_daily, simulate_starting_capital,
backtest_starting_capital, impact=0.1):
"""
Applies quadratic volumeshare slippage model to daily returns based
on the proportion of the observed historical daily bar dollar volume
consumed by the strategy's trades. Scales the size of trades based
on the ratio of the starting capital we wish to test to the starting
capital of the passed backtest data.
Parameters
----------
returns : pd.Series
Time series of daily returns.
txn_daily : pd.Series
Daily transaciton totals, closing price, and daily volume for
each traded name. See price_volume_daily_txns for more details.
simulate_starting_capital : integer
capital at which we want to test
backtest_starting_capital: capital base at which backtest was
origionally run. impact: See Zipline volumeshare slippage model
impact : float
Scales the size of the slippage penalty.
Returns
-------
adj_returns : pd.Series
Slippage penalty adjusted daily returns.
"""
mult = simulate_starting_capital / backtest_starting_capital
simulate_traded_shares = abs(mult * txn_daily.amount)
simulate_traded_dollars = txn_daily.price * simulate_traded_shares
simulate_pct_volume_used = simulate_traded_shares / txn_daily.volume
penalties = simulate_pct_volume_used**2 \
* impact * simulate_traded_dollars
daily_penalty = penalties.resample('D').sum()
daily_penalty = daily_penalty.reindex(returns.index).fillna(0)
# Since we are scaling the numerator of the penalties linearly
# by capital base, it makes the most sense to scale the denominator
# similarly. In other words, since we aren't applying compounding to
# simulate_traded_shares, we shouldn't apply compounding to pv.
portfolio_value = ep.cum_returns(
returns, starting_value=backtest_starting_capital) * mult
adj_returns = returns - (daily_penalty / portfolio_value)
return adj_returns
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/liu-zhiyong-wx/pyfolio.git
[email protected]:liu-zhiyong-wx/pyfolio.git
liu-zhiyong-wx
pyfolio
pyfolio
master

搜索帮助