2 Star 6 Fork 4

lipku/metahuman-stream

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
nerfreal.py 15.45 KB
一键复制 编辑 原始数据 按行查看 历史
lipku 提交于 2024-12-14 20:28 . Optimize multiple sessions
###############################################################################
# Copyright (C) 2024 LiveTalking@lipku https://github.com/lipku/LiveTalking
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
###############################################################################
import math
import torch
import numpy as np
#from .utils import *
import os
import time
import torch.nn.functional as F
import cv2
import glob
from nerfasr import NerfASR
import asyncio
from av import AudioFrame, VideoFrame
from basereal import BaseReal
#from imgcache import ImgCache
from ernerf.nerf_triplane.provider import NeRFDataset_Test
from ernerf.nerf_triplane.utils import *
from ernerf.nerf_triplane.network import NeRFNetwork
from transformers import AutoModelForCTC, AutoProcessor, Wav2Vec2Processor, HubertModel
from tqdm import tqdm
def read_imgs(img_list):
frames = []
print('reading images...')
for img_path in tqdm(img_list):
frame = cv2.imread(img_path)
frames.append(frame)
return frames
def load_model(opt):
# assert test mode
opt.test = True
opt.test_train = False
#opt.train_camera =True
# explicit smoothing
opt.smooth_path = True
opt.smooth_lips = True
assert opt.pose != '', 'Must provide a pose source'
# if opt.O:
opt.fp16 = True
opt.cuda_ray = True
opt.exp_eye = True
opt.smooth_eye = True
if opt.torso_imgs=='': #no img,use model output
opt.torso = True
# assert opt.cuda_ray, "Only support CUDA ray mode."
opt.asr = True
if opt.patch_size > 1:
# assert opt.patch_size > 16, "patch_size should > 16 to run LPIPS loss."
assert opt.num_rays % (opt.patch_size ** 2) == 0, "patch_size ** 2 should be dividable by num_rays."
seed_everything(opt.seed)
print(opt)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = NeRFNetwork(opt)
criterion = torch.nn.MSELoss(reduction='none')
metrics = [] # use no metric in GUI for faster initialization...
print(model)
trainer = Trainer('ngp', opt, model, device=device, workspace=opt.workspace, criterion=criterion, fp16=opt.fp16, metrics=metrics, use_checkpoint=opt.ckpt)
test_loader = NeRFDataset_Test(opt, device=device).dataloader()
model.aud_features = test_loader._data.auds
model.eye_areas = test_loader._data.eye_area
print(f'[INFO] loading ASR model {opt.asr_model}...')
if 'hubert' in opt.asr_model:
audio_processor = Wav2Vec2Processor.from_pretrained(opt.asr_model)
audio_model = HubertModel.from_pretrained(opt.asr_model).to(device)
else:
audio_processor = AutoProcessor.from_pretrained(opt.asr_model)
audio_model = AutoModelForCTC.from_pretrained(opt.asr_model).to(device)
return trainer,test_loader,audio_processor,audio_model
def load_avatar(opt):
fullbody_list_cycle = None
if opt.fullbody:
input_img_list = glob.glob(os.path.join(self.opt.fullbody_img, '*.[jpJP][pnPN]*[gG]'))
input_img_list = sorted(input_img_list, key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
#print('input_img_list:',input_img_list)
fullbody_list_cycle = read_imgs(input_img_list) #[:frame_total_num]
#self.imagecache = ImgCache(frame_total_num,self.opt.fullbody_img,1000)
return fullbody_list_cycle
class NeRFReal(BaseReal):
def __init__(self, opt, model,avatar, debug=True):
super().__init__(opt)
#self.opt = opt # shared with the trainer's opt to support in-place modification of rendering parameters.
self.W = opt.W
self.H = opt.H
#self.trainer = trainer
#self.data_loader = data_loader
self.trainer, self.data_loader, audio_processor,audio_model = model
# use dataloader's bg
#bg_img = data_loader._data.bg_img #.view(1, -1, 3)
#if self.H != bg_img.shape[0] or self.W != bg_img.shape[1]:
# bg_img = F.interpolate(bg_img.permute(2, 0, 1).unsqueeze(0).contiguous(), (self.H, self.W), mode='bilinear').squeeze(0).permute(1, 2, 0).contiguous()
#self.bg_color = bg_img.view(1, -1, 3)
# audio features (from dataloader, only used in non-playing mode)
#self.audio_features = data_loader._data.auds # [N, 29, 16]
#self.audio_idx = 0
#self.frame_total_num = data_loader._data.end_index
#print("frame_total_num:",self.frame_total_num)
# control eye
#self.eye_area = None if not self.opt.exp_eye else data_loader._data.eye_area.mean().item()
# playing seq from dataloader, or pause.
self.loader = iter(self.data_loader)
frame_total_num = self.data_loader._data.end_index
self.fullbody_list_cycle = avatar
#self.render_buffer = np.zeros((self.W, self.H, 3), dtype=np.float32)
#self.need_update = True # camera moved, should reset accumulation
#self.spp = 1 # sample per pixel
#self.mode = 'image' # choose from ['image', 'depth']
#self.dynamic_resolution = False # assert False!
#self.downscale = 1
#self.train_steps = 16
#self.ind_index = 0
#self.ind_num = trainer.model.individual_codes.shape[0]
#self.customimg_index = 0
# build asr
self.asr = NerfASR(opt,self,audio_processor,audio_model)
self.asr.warm_up()
'''
video_path = 'video_stream'
if not os.path.exists(video_path):
os.mkfifo(video_path, mode=0o777)
audio_path = 'audio_stream'
if not os.path.exists(audio_path):
os.mkfifo(audio_path, mode=0o777)
width=450
height=450
command = ['ffmpeg',
'-y', #'-an',
#'-re',
'-f', 'rawvideo',
'-vcodec','rawvideo',
'-pix_fmt', 'rgb24', #像素格式
'-s', "{}x{}".format(width, height),
'-r', str(fps),
'-i', video_path,
'-f', 's16le',
'-acodec','pcm_s16le',
'-ac', '1',
'-ar', '16000',
'-i', audio_path,
#'-fflags', '+genpts',
'-map', '0:v',
'-map', '1:a',
#'-copyts',
'-acodec', 'aac',
'-pix_fmt', 'yuv420p', #'-vcodec', "h264",
#"-rtmp_buffer", "100",
'-f' , 'flv',
push_url]
self.pipe = subprocess.Popen(command, shell=False) #, stdin=subprocess.PIPE)
self.fifo_video = open(video_path, 'wb')
self.fifo_audio = open(audio_path, 'wb')
#self.test_step()
'''
def __del__(self):
print(f'nerfreal({self.sessionid}) delete')
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
if self.opt.asr:
self.asr.stop()
# def mirror_index(self, index):
# size = self.opt.customvideo_imgnum
# turn = index // size
# res = index % size
# if turn % 2 == 0:
# return res
# else:
# return size - res - 1
def test_step(self,loop=None,audio_track=None,video_track=None):
#starter, ender = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
#starter.record()
try:
data = next(self.loader)
except StopIteration:
self.loader = iter(self.data_loader)
data = next(self.loader)
if self.opt.asr:
# use the live audio stream
data['auds'] = self.asr.get_next_feat()
audiotype1 = 0
audiotype2 = 0
#send audio
for i in range(2):
frame,type = self.asr.get_audio_out()
if i==0:
audiotype1 = type
else:
audiotype2 = type
#print(f'[INFO] get_audio_out shape ',frame.shape)
if self.opt.transport=='rtmp':
self.streamer.stream_frame_audio(frame)
else: #webrtc
frame = (frame * 32767).astype(np.int16)
new_frame = AudioFrame(format='s16', layout='mono', samples=frame.shape[0])
new_frame.planes[0].update(frame.tobytes())
new_frame.sample_rate=16000
asyncio.run_coroutine_threadsafe(audio_track._queue.put(new_frame), loop)
# if self.opt.transport=='rtmp':
# for _ in range(2):
# frame,type = self.asr.get_audio_out()
# audiotype += type
# #print(f'[INFO] get_audio_out shape ',frame.shape)
# self.streamer.stream_frame_audio(frame)
# else: #webrtc
# for _ in range(2):
# frame,type = self.asr.get_audio_out()
# audiotype += type
# frame = (frame * 32767).astype(np.int16)
# new_frame = AudioFrame(format='s16', layout='mono', samples=frame.shape[0])
# new_frame.planes[0].update(frame.tobytes())
# new_frame.sample_rate=16000
# # if audio_track._queue.qsize()>10:
# # time.sleep(0.1)
# asyncio.run_coroutine_threadsafe(audio_track._queue.put(new_frame), loop)
#t = time.time()
if audiotype1!=0 and audiotype2!=0: #全为静音数据
self.speaking = False
else:
self.speaking = True
if audiotype1!=0 and audiotype2!=0 and self.custom_index.get(audiotype1) is not None: #不为推理视频并且有自定义视频
mirindex = self.mirror_index(len(self.custom_img_cycle[audiotype1]),self.custom_index[audiotype1])
#imgindex = self.mirror_index(self.customimg_index)
#print('custom img index:',imgindex)
#image = cv2.imread(os.path.join(self.opt.customvideo_img, str(int(imgindex))+'.png'))
image = self.custom_img_cycle[audiotype1][mirindex]
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
self.custom_index[audiotype1] += 1
if self.opt.transport=='rtmp':
self.streamer.stream_frame(image)
else:
new_frame = VideoFrame.from_ndarray(image, format="rgb24")
asyncio.run_coroutine_threadsafe(video_track._queue.put(new_frame), loop)
else: #推理视频+贴回
outputs = self.trainer.test_gui_with_data(data, self.W, self.H)
#print('-------ernerf time: ',time.time()-t)
#print(f'[INFO] outputs shape ',outputs['image'].shape)
image = (outputs['image'] * 255).astype(np.uint8)
if not self.opt.fullbody:
if self.opt.transport=='rtmp':
self.streamer.stream_frame(image)
else:
new_frame = VideoFrame.from_ndarray(image, format="rgb24")
asyncio.run_coroutine_threadsafe(video_track._queue.put(new_frame), loop)
else: #fullbody human
#print("frame index:",data['index'])
#image_fullbody = cv2.imread(os.path.join(self.opt.fullbody_img, str(data['index'][0])+'.jpg'))
image_fullbody = self.fullbody_list_cycle[data['index'][0]]
#image_fullbody = self.imagecache.get_img(data['index'][0])
image_fullbody = cv2.cvtColor(image_fullbody, cv2.COLOR_BGR2RGB)
start_x = self.opt.fullbody_offset_x # 合并后小图片的起始x坐标
start_y = self.opt.fullbody_offset_y # 合并后小图片的起始y坐标
image_fullbody[start_y:start_y+image.shape[0], start_x:start_x+image.shape[1]] = image
if self.opt.transport=='rtmp':
self.streamer.stream_frame(image_fullbody)
else:
new_frame = VideoFrame.from_ndarray(image_fullbody, format="rgb24")
asyncio.run_coroutine_threadsafe(video_track._queue.put(new_frame), loop)
#self.pipe.stdin.write(image.tostring())
#ender.record()
#torch.cuda.synchronize()
#t = starter.elapsed_time(ender)
def render(self,quit_event,loop=None,audio_track=None,video_track=None):
#if self.opt.asr:
# self.asr.warm_up()
self.init_customindex()
if self.opt.transport=='rtmp':
from rtmp_streaming import StreamerConfig, Streamer
fps=25
#push_url='rtmp://localhost/live/livestream' #'data/video/output_0.mp4'
sc = StreamerConfig()
sc.source_width = self.W
sc.source_height = self.H
sc.stream_width = self.W
sc.stream_height = self.H
if self.opt.fullbody:
sc.source_width = self.opt.fullbody_width
sc.source_height = self.opt.fullbody_height
sc.stream_width = self.opt.fullbody_width
sc.stream_height = self.opt.fullbody_height
sc.stream_fps = fps
sc.stream_bitrate = 1000000
sc.stream_profile = 'baseline' #'high444' # 'main'
sc.audio_channel = 1
sc.sample_rate = 16000
sc.stream_server = self.opt.push_url
self.streamer = Streamer()
self.streamer.init(sc)
#self.streamer.enable_av_debug_log()
count=0
totaltime=0
_starttime=time.perf_counter()
_totalframe=0
self.tts.render(quit_event)
while not quit_event.is_set(): #todo
# update texture every frame
# audio stream thread...
t = time.perf_counter()
# run 2 ASR steps (audio is at 50FPS, video is at 25FPS)
for _ in range(2):
self.asr.run_step()
self.test_step(loop,audio_track,video_track)
totaltime += (time.perf_counter() - t)
count += 1
_totalframe += 1
if count==100:
print(f"------actual avg infer fps:{count/totaltime:.4f}")
count=0
totaltime=0
if self.opt.transport=='rtmp':
delay = _starttime+_totalframe*0.04-time.perf_counter() #40ms
if delay > 0:
time.sleep(delay)
else:
if video_track._queue.qsize()>=5:
#print('sleep qsize=',video_track._queue.qsize())
time.sleep(0.04*video_track._queue.qsize()*0.8)
print('nerfreal thread stop')
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/lipku/metahuman-stream.git
[email protected]:lipku/metahuman-stream.git
lipku
metahuman-stream
metahuman-stream
main

搜索帮助