代码拉取完成,页面将自动刷新
import os
import sys
import cv2
import torch
import numpy as np
from utils.general import Profile, non_max_suppression, scale_boxes, check_img_size
from utils.augmentations import letterbox
from models.common import DetectMultiBackend
from utils.torch_utils import select_device, smart_inference_mode
from ultralytics.utils.plotting import Annotator, colors, save_one_box
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
class yolov5(object):
def __init__(self, weights, conf_thresh=0.45, iou_thresh = 0.45, classes=None, imgsz=(640,640), img_size=640, stride=32, autoSize = True, device=0) -> None:
# Load model
device = select_device(device)
data = ROOT / 'data/coco128.yaml'
self.img_size = img_size
self.stride = stride
self.auto = autoSize
self.model = DetectMultiBackend(weights, device=device, dnn=False, data=data, fp16=False)
stride, self.names, pt = self.model.stride, self.model.names, self.model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
self.seen, self.windows, self.dt = 0, [], (Profile(), Profile(), Profile())
self.augment = False
self.visualize = False, # visualize features
self.conf_thres = conf_thresh
self.iou_thres = iou_thresh
self.classes = classes
self.hide_conf = False
self.hide_labels = False
self.transforms = None
self.imgs = [None] * 1
def run(self, img):
s = ''
self.imgs[0] = img.copy()
im0 = img.copy()
annotator = Annotator(self.imgs[0], line_width=3, example=str(self.names))
# if self.transforms:
# im = np.stack([self.transforms(x) for x in im0]) # transforms
# else:
im = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0] for x in self.imgs]) # resize
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
im = np.ascontiguousarray(im) # contiguous
with self.dt[0]:
im = torch.from_numpy(im).to(self.model.device)
im = im.half() if self.model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
with self.dt[1]:
# visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = self.model(im, augment=self.augment, visualize=False)
# NMS
with self.dt[2]:
pred = non_max_suppression(pred, self.conf_thres, self.iou_thres, self.classes, agnostic=False, max_det=100)
# Process predictions
dets = []
for i, det in enumerate(pred): # per image
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
c = int(cls) # integer class
label = self.names[c] if self.hide_conf else f'{self.names[c]}'
confidence = float(conf)
# box = xyxy.tolist()
dets.append([int(xyxy[0].cpu().numpy()),
int(xyxy[1].cpu().numpy()),
int(xyxy[2].cpu().numpy()),
int(xyxy[3].cpu().numpy()),
confidence,
c])
# confidence_str = f'{confidence:.2f}'
# label = None if self.hide_labels else (self.names[c] if self.hide_conf else f'{self.names[c]} {conf:.2f}')
# annotator.box_label(xyxy, label, color=colors(c, True))
# im0 = annotator.result()
# cv2.imshow("yolov5", im0)
# cv2.waitKey(1) # 1 millisecond
return np.array(dets)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。