1 Star 0 Fork 61

非常量非常亮/TDXPystock

forked from 金诺/TDXPystock 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
南向资金持仓分析.py 14.38 KB
一键复制 编辑 原始数据 按行查看 历史
金诺 提交于 2021-07-18 13:07 . 调整结构
import bs4
import requests as req
import json
import prettytable as pt #格式化成表格输出到html文件
import time,sys,re
from dboprater import DB as db
from pyecharts.charts import Line
from pyecharts import options as opts
import tushare as ts
import webbrowser #打开浏览器
'''手动安装 talib 去https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib 下载对应的版本“TA_Lib‑0.4.19‑cp37‑cp37m‑win_amd64.whl” 然后 pip3 install TA_Lib‑0.4.19‑cp37‑cp37m‑win_amd64.whl'''
# import talib #Technical Analysis Library”, 即技术分析库 是Python金融量化的高级库,涵盖了150多种股票、期货交易软件中常用的技术分析指标,如MACD、RSI、KDJ、动量指标、布林带等等。
# import numpy as np
# import matplotlib.pyplot as plt
# import matplotlib.gridspec as gridspec#分割子图
# import mpl_finance as mpf # python中可以用来画出蜡烛图、线图的分析工具,目前已经从matplotlib中独立出来,非常适合用来画K线
import pymysql
pro = ts.pro_api('d0bf482fc51bedbefa41bb38877e169a43d00bd9ebfa1f21d28151c7')
ts.set_token('d0bf482fc51bedbefa41bb38877e169a43d00bd9ebfa1f21d28151c7')
database='stock'
tablename='stockopendata'
configfile='./config/mysqlconfig.json'
dpath = 'C:\\十档行情\\T0002\\signals\\signals_user_9603\\'
#获取南向数据总页数
def get_pages(headers,url,params):
response=req.get(url=url,headers=headers,params=params).text
#print(response)
regx='pages:(\d{0,3})'
pages=re.findall(regx,response)[0]
#print(pages)
return int(pages)
#写文件
def WriteData(southdatainfos):
southdatafile = '南向资金数据.txt'
with open(southdatafile, 'w', encoding='utf-8') as fw:
fw.write(str(southdatainfos))
#获取所有南向资金数据
def getsouth():
#url='http://data.eastmoney.com/hsgtcg/lz.html'
url = 'http://dcfm.eastmoney.com/EM_MutiSvcExpandInterface/api/js/get'
headers = {
'Accept': '*/*',
'Accept-Encoding': 'gzip, deflate',
'Accept-Language': 'zh - CN, zh; q = 0.9, en; q = 0.8 ',
'Connection': 'keep-alive',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.111 Safari/537.36',
'Cookie': 'pgv_pvi=3794568192; _qddaz=QD.6ofmf2.j6jr4m.kat8wucp; ct=u_GCXp_V0BUfw6EE3hFHtqMglz3afgkppJcv5vbFImFCEcWBrdbJ1czxMgSRvdgdMHMxnKracqlOZgxC4VNfwrkiwCCnYCNVFUzHMie-NyeUGcc8-NdJwvaXLimNiEt9gsOQO3q161JU2fTSAHZYRo5byr67JKvMwuA_2qSbhls; ut=FobyicMgeV5ghfUPKWOH5wak5fe7PCdYa2maZFrymrOdfN-wAEFtpNp1MzH070EBSmKRLG6vmIcYwEk2SvuUDiGwHB7BHzpaN3m4xMthhPoNqi89FTByaNH4MkRCfEYW4JX960vY0ITlmRY-cPk1PQzTvxCYnVj0Ey0NtYOnUdj24K9O1_tKWeyEDf1k_bIV6hcX360Qn8yYsWTrETZTzGYR7tn62AgnDFAq58DbSa3StLkggc5c7wB94try8c_WEpaHHyl5rA7BBAJZkje3dZ7Q7pZSUWri; pi=3323115305075326%3bc3323115305075326%3b%e8%82%a1%e5%8f%8bjHWZa22110%3bAc4gMB%2bahzpZU8kVvDCm4%2f9QLFcpRepVrDlj4DSAFvQS9L41u5PjbhW1g0ATNFBs2U6jdaiAi0v97coryIUwYaBWyHAUTbi1GDBZdDmkrBugnCGTBDTgPjXURUbrtmze597viYIL2RjHQTBKDzTIQqxuco%2b4pIMvD3B%2f2gF3Z2HSKCRGXGX%2bMcFxewJmIXD8wOJYtqii%3bM4Rnsdjx0lNLDrlCNBv6VhW13wgvkjpsoKd52WM1JsrPCSqUd%2fySTvks6nwUjCNsGby4fYU2Y%2bbjGtRBVly22B%2bqdAhoqGh6XrZIWQGX4LDnpd4CKtckek2Rlq7r9qjcQSdzcprF%2bmmkr9EqKBQVnmt9ppYRhg%3d%3d; uidal=3323115305075326%e8%82%a1%e5%8f%8bjHWZa22110; sid=126018279; _ga=GA1.2.1363410539.1596117007; em_hq_fls=js; AUTH_FUND.EASTMONEY.COM_GSJZ=AUTH*TTJJ*TOKEN; emshistory=%5B%22%E4%BA%BA%E6%B0%94%E6%8E%92%E8%A1%8C%E6%A6%9C%22%2C%22%E6%AF%94%E4%BA%9A%E8%BF%AA%E4%BA%BA%E6%B0%94%E6%8E%92%E5%90%8D%22%2C%22%E5%9F%BA%E9%87%91%E6%8E%92%E8%A1%8C%22%2C%22%E8%BF%913%E4%B8%AA%E6%9C%88%E8%B7%8C%E5%B9%85%E6%9C%80%E5%A4%A7%E7%9A%84%E5%9F%BA%E9%87%91%22%2C%22%E5%85%BB%E8%80%81%E9%87%91%E6%8C%81%E8%82%A1%E5%8A%A8%E5%90%91%E6%9B%9D%E5%85%89%22%2C%22%E5%A4%96%E7%9B%98%E6%9C%9F%E8%B4%A7%22%2C%22A50%22%2C%22%E6%81%92%E7%94%9F%E6%B2%AA%E6%B7%B1%E6%B8%AF%E9%80%9A%E7%BB%86%E5%88%86%E8%A1%8C%E4%B8%9A%E9%BE%99%E5%A4%B4A%22%2C%22%E7%BB%86%E5%88%86%E8%A1%8C%E4%B8%9A%E9%BE%99%E5%A4%B4%22%5D; vtpst=%7c; HAList=d-hk-00288%2Cd-hk-00772%2Cf-0-399006-%u521B%u4E1A%u677F%u6307%2Ca-sz-002008-%u5927%u65CF%u6FC0%u5149%2Ca-sz-002739-%u4E07%u8FBE%u7535%u5F71%2Cf-0-000001-%u4E0A%u8BC1%u6307%u6570%2Cd-hk-00981%2Ca-sz-002082-%u4E07%u90A6%u5FB7%2Ca-sz-300511-%u96EA%u6995%u751F%u7269; st_si=85201197981579; cowCookie=true; waptgshowtime=2021121; qgqp_b_id=3a2c1ce1f45a81a3fa7cc2fbad8e2a24; st_asi=delete; intellpositionL=581px; st_pvi=03400063938128; st_sp=2020-05-23%2013%3A48%3A35; st_inirUrl=https%3A%2F%2Fwww.baidu.com%2Flink; st_sn=60; st_psi=2021012310245852-113300303605-1019447906; intellpositionT=2133.55px'
}
params = {'type': 'HSGTHDSTA',
'token': '894050c76af8597a853f5b408b759f5d',
'filter': '(MARKET=\'S\')',
'st': 'HDDATE',
'sr': -1,
'p': 1,
'ps': 50,
'js': 'var DYCpZajM={pages:(tp),data:(x)}',
'rt': '53712406'}
#获取北向数据总页数
pages=get_pages(headers,url,params)
#print(pages)
southdatainfos=[]
for i in range(1,pages+1,1): #南向数据每天只有10页的数据量(取总量)
try:
params = {'type': 'HSGTHDSTA',
'token': '894050c76af8597a853f5b408b759f5d',
'filter': '(MARKET=\'S\')',
'st': 'HDDATE',
'sr': -1,
'p': i,
'ps': 50,
'js': 'var DYCpZajM={pages:(tp),data:(x)}',
'rt': '53712406'}
response=req.get(url=url,headers=headers,params=params)
bstext=bs4.BeautifulSoup(response.content,'lxml')
tempdata = bstext.find_all('p')
temp = str(tempdata)
regex = 'data:(.*?)}</p>'
jsondata=str(re.findall(regex,temp,re.M))
#print((jsondata))
data=jsondata.replace('\\r\\n','',-1).replace('},','}},',-1).replace('[\'[','',-1).replace(']\']','',-1)
listdata=data.split('},',-1)
header = ['日期', '股票代码 ', '股票名称 ', '持股数亿', '占比', '收盘价 ', '当日涨跌幅 ', '持股市值亿 ', '一日市值变化亿', '五日市值变化亿', '十日市值变化亿']
#print(len(listdata))
'''data: [{
"HDDATE": "2020-12-30T00:00:00", 日期
"HKCODE": "1000145950",
"SCODE": "00700", 代码
"SNAME": "腾讯控股", 名称
"SHAREHOLDSUM": 425931727.0, 持股数
"SHARESRATE": 4.43,占比
"CLOSEPRICE": 559.5,收盘价
"ZDF": 5.4665,当日涨跌幅
"SHAREHOLDPRICE": 238308801256.5, 持股市值
"SHAREHOLDPRICEONE": 19102759903.0,一日市值变化
"SHAREHOLDPRICEFIVE": 2113479276.5,五日市值变化
"SHAREHOLDPRICETEN": 3843934536.5,十日市值变化 '''
southdatainfos.append(listdata)
time.sleep(1)
except BaseException as BE:
print(BE)
continue
#print(jsondata)
print('所有南向数据获取成功!!')
#将数据写到文件,以便读取使用,免得每次都要去网上爬,造成大量访问
WriteData(southdatainfos)
return southdatainfos
#写数据库
def insertdb (southdatainfos):
if len(southdatainfos)==0:
return
conn = db.dbconnect()
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
#由于每次取的是全量数据,先将表清空
sql1='delete from southdataanly'
cursor.execute(sql1)
conn.commit()
# 执行的sql语句
sql = '''insert into southdataanly (HDDATE,SCODE,SNAME,SHAREHOLDSUM,SHARESRATE,CLOSEPRICE,ZDF,SHAREHOLDPRICE,SHAREHOLDPRICEONE,SHAREHOLDPRICEFIVE,SHAREHOLDPRICETEN) values (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)'''
for datalist in southdatainfos:
for row in datalist: # 依次获取每一行数据
try:
jsdata = json.loads(row)
HDDATE = str(jsdata['HDDATE'])[0:10]
SCODE = jsdata['SCODE']
SNAME = jsdata['SNAME']
SHAREHOLDSUM = format(jsdata['SHAREHOLDSUM'] / 100000000, '.3f')
SHARESRATE = jsdata['SHARESRATE']
CLOSEPRICE = jsdata['CLOSEPRICE']
ZDF = jsdata['ZDF']
SHAREHOLDPRICE = format(jsdata['SHAREHOLDPRICE'] / 100000000, '.3f')
SHAREHOLDPRICEONE = format(jsdata['SHAREHOLDPRICEONE'] / 100000000, '.3f')
SHAREHOLDPRICEFIVE = format(jsdata['SHAREHOLDPRICEFIVE'] / 100000000, '.3f')
SHAREHOLDPRICETEN = format(jsdata['SHAREHOLDPRICETEN'] / 100000000, '.3f')
values = (
HDDATE, SCODE, SNAME, SHAREHOLDSUM, SHARESRATE, CLOSEPRICE, ZDF, SHAREHOLDPRICE, SHAREHOLDPRICEONE,
SHAREHOLDPRICEFIVE, SHAREHOLDPRICETEN)
cursor.execute(sql, values)
# print(values,sql)
except BaseException as be:
print(be)
continue
conn.commit()
conn.commit()
conn.close()
print('入库成功!!!')
#按条件查询持续比例与持股市值
def selectdb(**kwords): #**kwords :表示可以传入多个键值对, *kwords:表示可传入多个参数
conditions=str(kwords).strip('{').strip('}').replace(':','=',1).replace('\'','',2)
print(conditions)
conn = db.dbconnect()
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
# 执行的sql语句
sql = '''select HDDATE,SCODE,SNAME,SHAREHOLDSUM,SHARESRATE,CLOSEPRICE,ZDF,SHAREHOLDPRICE,SHAREHOLDPRICEONE,SHAREHOLDPRICEFIVE,SHAREHOLDPRICETEN from southdataanly '''
sql=sql+ 'where '+ conditions + ' order by HDDATE '
print(sql)
cursor.execute(sql)
resultset=cursor.fetchall()
return resultset
#获取日线数据
def get_stock_dateData(stockcode,start_date,end_date):
if stockcode[0:2] =='600' or stockcode[0:2]=='68':
stockcode=stockcode+'.SH'
else:
stockcode = stockcode+'.SZ'
#从tushare 获取日线数据
df = pro.daily(ts_code=stockcode, start_date=start_date,end_date=end_date)
df=df.sort_values(by=['trade_date'],ascending=True) #按日期升序
#从baostock获取数据
# lg = bs.login()
# rs = bs.query_history_k_data_plus(stockcode,
# "date,code,open,high,low,close,preclose,volume,amount,adjustflag,turn,tradestatus,pctChg,isST",
# start_date=start_date, end_date=end_date,
# frequency="30m", adjustflag="3")
# data_list = []
# while (rs.error_code == '0') & rs.next():
# # 获取一条记录,将记录合并在一起
# data_list.append(rs.get_row_data())
# result = pd.DataFrame(data_list, columns=rs.fields)
#print(df)
return df
#将查询到的数据分析后输出到html
def rendertohtml(resultset):
header = ['日期', '股票代码 ', '股票名称 ', '持股数亿', '占比', '收盘价 ', '当日涨跌幅 ', '持股市值亿 ', '一日市值变化亿', '五日市值变化亿', '十日市值变化亿']
tb = pt.PrettyTable()
tb.field_names = header # 设置表头
tb.align = 'c' # 对齐方式(c:居中,l居左,r:居右)
c = Line()
x = ['持股占比']
name=''
HDDATELIST=[]
SHAREHOLDSUMlist=[] #持股数
SHARESRATElist=[]#持股占比
SHAREHOLD=[]#持股数量
#取出占比数据
for data in resultset:
HDDATE=data['HDDATE']
#HDDATE = datetime.datetime.strptime(HDDATE1, '%Y-%m-%d').strftime('%Y%m%d')
HDDATELIST.append(HDDATE)
SCODE = data['SCODE']
SHAREHOLDSUM=data['SHAREHOLDSUM']
SHAREHOLDSUMlist.append(SHAREHOLDSUM)
SNAME = data['SNAME']
SHARESRATE = data['SHARESRATE']
SHARESRATElist.append(SHARESRATE)
CLOSEPRICE = data['CLOSEPRICE']
ZDF = data['ZDF']
SHAREHOLDPRICE = format(data['SHAREHOLDPRICE'], '.3f')
SHAREHOLDPRICEONE = format(data['SHAREHOLDPRICEONE'] , '.3f')
SHAREHOLDPRICEFIVE = format(data['SHAREHOLDPRICEFIVE'] , '.3f')
SHAREHOLDPRICETEN = format(data['SHAREHOLDPRICETEN'] , '.3f')
tb.add_row(
[HDDATE, SCODE, SNAME, SHAREHOLDSUM, SHARESRATE, CLOSEPRICE, ZDF, SHAREHOLDPRICE, SHAREHOLDPRICEONE,
SHAREHOLDPRICEFIVE, SHAREHOLDPRICETEN])
OUTFILE='南向资金_'+SNAME+'.html'
#print(SHARESRATE)
x1=HDDATELIST
y1 = SHARESRATElist #将占比数据设置为y轴
y2=SHAREHOLDSUMlist
#y2 = [1000, 300, 500]
#bar = Bar()
# 设置x轴
c.add_xaxis(xaxis_data=x)
c.add_xaxis(xaxis_data=x1)
# 设置y轴
c.add_yaxis(series_name='持股百分比', y_axis=y1)
c.add_yaxis(series_name='持股数量亿', y_axis=y2)
c.set_global_opts(title_opts=opts.TitleOpts(title='南向资金持股分析: '+SNAME))
# 生成html文件
c.render(path=OUTFILE)
#如果要输出柱图
'''
bar = Bar()
然后将c 换成bar
'''
#将数据也输出到文件
s=tb.get_html_string()
with open(OUTFILE,'a+',encoding='utf-8') as fw:
fw.write(s)
fw.close()
#outfile='file://'+OUTFILE
webbrowser.open(OUTFILE)#调用浏览器打开文件
if __name__ == '__main__':
# southdata=getsouth() #获取南向数据 ,获取数据后,将它注释掉
# insertdb (southdata) #将南向数据写表 获取数据后,将它注释掉
# SNAME='腾讯控股'
SNAME='建设银行'
SNAME='小米集团 - W'
var = sys.argv # 可以接收从外部传入参数
if len(var)>1:
SNAME=var[1]
if var[1].isdigit():
resultset = selectdb(SCODE=SNAME) # 按名称查询南向资金占比
else:
resultset=selectdb(SNAME=SNAME)#按名称查询南向资金占比
rendertohtml(resultset)
else:
resultset = selectdb(SNAME='腾讯控股') # 按名称查询南向资金占比
rendertohtml(resultset)
'''
CREATE TABLE IF NOT EXISTS `southdataanly`(
HDDATE date,
SCODE varchar(8),
SNAME varchar(20),
SHAREHOLDSUM float,
SHARESRATE float,
CLOSEPRICE float,
ZDF float,
SHAREHOLDPRICE float,
SHAREHOLDPRICEONE float,
SHAREHOLDPRICEFIVE float,
SHAREHOLDPRICETEN float
)ENGINE=InnoDB DEFAULT CHARSET=utf8;
create index southdataanlycode on southdataanly(SCODE);
create index southdataanlyHdDate on southdataanly(HDDATE);
create index southdataanlySName on southdataanly(SNAME);
'''
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/lingdioffice/TDXPystock.git
[email protected]:lingdioffice/TDXPystock.git
lingdioffice
TDXPystock
TDXPystock
newmastor

搜索帮助