1 Star 0 Fork 6

hxf233333/My-Fatigue-Driven-Detection-Based-on-SSD

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
video_detection.py 5.51 KB
一键复制 编辑 原始数据 按行查看 历史
Revan-github 提交于 2019-06-07 14:11 . Add files via upload
# -*- coding: utf-8 -*-
"""
Created on Fri Apr 26 15:58:49 2019
@author: 朋飞
"""
from torch.autograd import Variable
from detection import *
from ssd_net_vgg import *
from voc0712 import *
import torch
import torch.nn as nn
import numpy as np
import cv2
import utils
import torch.backends.cudnn as cudnn
import time
#检测cuda是否可用
if torch.cuda.is_available():
print('-----gpu mode-----')
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
print('-----cpu mode-----')
colors_tableau=[ (214, 39, 40),(23, 190, 207),(188, 189, 34),(188,34,188),(205,108,8)]
def Yawn(list_Y,list_y1):
list_cmp=list_Y[:len(list_Y1)]==list_Y1
for flag in list_cmp:
if flag==False:
return False
return True
#初始化网络
net=SSD()
net=torch.nn.DataParallel(net)
net.train(mode=False)
net.load_state_dict(torch.load('./weights/ssd300_VOC_100000.pth',map_location=lambda storage,loc: storage))
if torch.cuda.is_available():
net = net.cuda()
cudnn.benchmark = True
img_mean=(104.0,117.0,123.0)
#打开视频文件,file_name改成0即为打开摄像头
file_name='../Captures/003.WMV'
cap=cv2.VideoCapture(file_name)
max_fps=0
#保存检测结果的List
#眼睛和嘴巴都是,张开为‘1’,闭合为‘0’
video_fps=20#视频fps=20
list_B=np.ones(video_fps*3)#眼睛状态List,建议根据fps修改,视频fps=20
list_Y=np.zeros(video_fps*10)#嘴巴状态list,10s
list_Y1=np.ones(int(video_fps*1.5))#如果在list_Y中存在list_Y1,则判定一次打哈欠(大约1.5s),
list_Y1[int(video_fps*1.5)-1]=0#从持续张嘴到闭嘴判定为一次打哈欠
list_blink=np.ones(video_fps*10)#大约是记录10S内信息,眨眼为‘1’,不眨眼为‘0’
list_yawn=np.zeros(video_fps*30)#大约是半分钟内打哈欠记录,打哈欠为‘1’,不打哈欠为‘0’
#blink_count=0#眨眼计数
#yawn_count=0
#blink_start=time.time()#炸眼时间
#yawn_start=time.time()#打哈欠时间
blink_freq=0.5
yawn_freq=0
#开始检测,按‘q’退出
while cap.isOpened():
flag_B=True#是否闭眼的flag
flag_Y=False#张嘴flag
num_rec=0#检测到的眼睛的数量
start=time.time()#计时
ret,img=cap.read()#读取图片
#检测
x=cv2.resize(img,(300,300)).astype(np.float32)
x-=img_mean
x=x.astype(np.float32)
x=x[:,:,::-1].copy()
x=torch.from_numpy(x).permute(2,0,1)
xx=Variable(x.unsqueeze(0))
if torch.cuda.is_available():
xx=xx.cuda()
y=net(xx)
softmax=nn.Softmax(dim=-1)
detect=Detect(config.class_num,0,200,0.01,0.45)
priors=utils.default_prior_box()
loc,conf=y
loc=torch.cat([o.view(o.size(0),-1)for o in loc],1)
conf=torch.cat([o.view(o.size(0),-1)for o in conf],1)
detections=detect(
loc.view(loc.size(0),-1,4),
softmax(conf.view(conf.size(0),-1,config.class_num)),
torch.cat([o.view(-1,4) for o in priors],0)
).data
labels=VOC_CLASSES
top_k=10
#将检测结果放置于图片上
scale=torch.Tensor(img.shape[1::-1]).repeat(2)
for i in range(detections.size(1)):
j=0
while detections[0,i,j,0]>=0.4:
score=detections[0,i,j,0]
label_name=labels[i-1]
if label_name=='closed_eye':
flag_B=False
if label_name=='open_mouth':
flag_Y=True
display_txt='%s:%.2f'%(label_name,score)
pt=(detections[0,i,j,1:]*scale).cpu().numpy()
coords=(pt[0],pt[1]),pt[2]-pt[0]+1,pt[3]-pt[1]+1
color=colors_tableau[i]
cv2.rectangle(img,(pt[0],pt[1]),(pt[2],pt[3]),color,2)
cv2.putText(img,display_txt,(int(pt[0]),int(pt[1])+10),cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1, 8)
j+=1
num_rec+=1
if num_rec>0:
if flag_B:
#print(' 1:eye-open')
list_B=np.append(list_B,1)#睁眼为‘1’
else:
#print(' 0:eye-closed')
list_B=np.append(list_B,0)#闭眼为‘0’
list_B=np.delete(list_B,0)
if flag_Y:
list_Y=np.append(list_Y,1)
else:
list_Y=np.append(list_Y,0)
list_Y=np.delete(list_Y,0)
else:
print('nothing detected')
#print(list)
if list_B[13]==1 and list_B[14]==0:
#如果上一帧为’1‘,此帧为’0‘则判定为眨眼
print('----------------眨眼----------------------')
list_blink=np.append(list_blink,1)
else:
list_blink=np.append(list_blink,0)
list_blink=np.delete(list_blink,0)
#检测打哈欠
#if Yawn(list_Y,list_Y1):
if (list_Y[len(list_Y)-len(list_Y1):]==list_Y1).all():
print('----------------------打哈欠----------------------')
list_Y=np.zeros(50)#此处是检测到一次打哈欠之后将嘴部状态list全部置‘0’,考虑到打哈欠所用时间较长,所以基本不会出现漏检
list_yawn=np.append(list_yawn,1)
else:
list_yawn=np.append(list_yawn,0)
list_yawn=np.delete(list_yawn,0)
#实时计算PERCLOS perblink,peryawn
#即计算平均闭眼时长百分比,平均眨眼百分比,平均打哈欠百分比
perclos=1-np.average(list_B)
perblink=np.average(list_blink)
peryawn=np.average(list_yawn)
#print('perclos={:f}'.format(perclos))
#此处为判断疲劳部分
#想法1:两个频率计算改为实时的,所以此处不再修改
if(perclos>0.4 or perblink<2.5/(10*video_fps) or peryawn>3/(30*video_fps)):
print('疲劳')
else:
print('清醒')
T=time.time()-start
fps=1/T#实时在视频上显示fps
if fps>max_fps:
max_fps=fps
fps_txt='fps:%.2f'%(fps)
cv2.putText(img,fps_txt,(0,10),cv2.FONT_HERSHEY_SIMPLEX, 0.4, (255,255,255), 1, 8)
cv2.imshow("ssd",img)
if cv2.waitKey(100) & 0xff == ord('q'):
break
#print("-------end-------")
cap.release()
cv2.destroyAllWindows()
#print(max_fps)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/hxf233333/Fatigue-Driven-Detection-Based-on-CNN.git
[email protected]:hxf233333/Fatigue-Driven-Detection-Based-on-CNN.git
hxf233333
Fatigue-Driven-Detection-Based-on-CNN
My-Fatigue-Driven-Detection-Based-on-SSD
master

搜索帮助