1 Star 0 Fork 0

Grokit/go-llama.cpp

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
llama.go 12.44 KB
一键复制 编辑 原始数据 按行查看 历史
package llama
// #cgo CXXFLAGS: -I${SRCDIR}/llama.cpp/common -I${SRCDIR}/llama.cpp
// #cgo LDFLAGS: -L${SRCDIR}/ -lbinding -lm -lstdc++
// #cgo darwin LDFLAGS: -framework Accelerate
// #cgo darwin CXXFLAGS: -std=c++11
// #include "binding.h"
// #include <stdlib.h>
import "C"
import (
"fmt"
"os"
"strings"
"sync"
"unsafe"
)
type LLama struct {
state unsafe.Pointer
embeddings bool
contextSize int
}
func New(model string, opts ...ModelOption) (*LLama, error) {
mo := NewModelOptions(opts...)
modelPath := C.CString(model)
defer C.free(unsafe.Pointer(modelPath))
loraBase := C.CString(mo.LoraBase)
defer C.free(unsafe.Pointer(loraBase))
loraAdapter := C.CString(mo.LoraAdapter)
defer C.free(unsafe.Pointer(loraAdapter))
MulMatQ := true
if mo.MulMatQ != nil {
MulMatQ = *mo.MulMatQ
}
result := C.load_model(modelPath,
C.int(mo.ContextSize), C.int(mo.Seed),
C.bool(mo.F16Memory), C.bool(mo.MLock), C.bool(mo.Embeddings), C.bool(mo.MMap), C.bool(mo.LowVRAM),
C.int(mo.NGPULayers), C.int(mo.NBatch), C.CString(mo.MainGPU), C.CString(mo.TensorSplit), C.bool(mo.NUMA),
C.float(mo.FreqRopeBase), C.float(mo.FreqRopeScale),
C.bool(MulMatQ), loraAdapter, loraBase,
)
if result == nil {
return nil, fmt.Errorf("failed loading model")
}
ll := &LLama{state: result, contextSize: mo.ContextSize, embeddings: mo.Embeddings}
return ll, nil
}
func (l *LLama) Free() {
C.llama_binding_free_model(l.state)
}
func (l *LLama) LoadState(state string) error {
d := C.CString(state)
w := C.CString("rb")
result := C.load_state(l.state, d, w)
defer C.free(unsafe.Pointer(d)) // free allocated C string
defer C.free(unsafe.Pointer(w)) // free allocated C string
if result != 0 {
return fmt.Errorf("error while loading state")
}
return nil
}
func (l *LLama) SaveState(dst string) error {
d := C.CString(dst)
w := C.CString("wb")
C.save_state(l.state, d, w)
defer C.free(unsafe.Pointer(d)) // free allocated C string
defer C.free(unsafe.Pointer(w)) // free allocated C string
_, err := os.Stat(dst)
return err
}
// Token Embeddings
func (l *LLama) TokenEmbeddings(tokens []int, opts ...PredictOption) ([]float32, error) {
if !l.embeddings {
return []float32{}, fmt.Errorf("model loaded without embeddings")
}
po := NewPredictOptions(opts...)
outSize := po.Tokens
if po.Tokens == 0 {
outSize = 9999999
}
floats := make([]float32, outSize)
myArray := (*C.int)(C.malloc(C.size_t(len(tokens)) * C.sizeof_int))
// Copy the values from the Go slice to the C array
for i, v := range tokens {
(*[1<<31 - 1]int32)(unsafe.Pointer(myArray))[i] = int32(v)
}
// void* llama_allocate_params(const char *prompt, int seed, int threads, int tokens,
// int top_k, float top_p, float temp, float repeat_penalty,
// int repeat_last_n, bool ignore_eos, bool memory_f16,
// int n_batch, int n_keep, const char** antiprompt, int antiprompt_count,
// float tfs_z, float typical_p, float frequency_penalty, float presence_penalty, int mirostat, float mirostat_eta, float mirostat_tau, bool penalize_nl, const char *logit_bias, const char *session_file, bool prompt_cache_all, bool mlock, bool mmap, const char *maingpu, const char *tensorsplit , bool prompt_cache_ro,
// float rope_freq_base, float rope_freq_scale, float negative_prompt_scale, const char* negative_prompt
// );
params := C.llama_allocate_params(C.CString(""), C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
C.int(po.Batch), C.int(po.NKeep), nil, C.int(0),
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), C.CString(po.LogitBias),
C.CString(po.PathPromptCache), C.bool(po.PromptCacheAll), C.bool(po.MLock), C.bool(po.MMap),
C.CString(po.MainGPU), C.CString(po.TensorSplit),
C.bool(po.PromptCacheRO),
C.CString(po.Grammar),
C.float(po.RopeFreqBase), C.float(po.RopeFreqScale), C.float(po.NegativePromptScale), C.CString(po.NegativePrompt),
)
ret := C.get_token_embeddings(params, l.state, myArray, C.int(len(tokens)), (*C.float)(&floats[0]))
if ret != 0 {
return floats, fmt.Errorf("embedding inference failed")
}
return floats, nil
}
// Embeddings
func (l *LLama) Embeddings(text string, opts ...PredictOption) ([]float32, error) {
if !l.embeddings {
return []float32{}, fmt.Errorf("model loaded without embeddings")
}
po := NewPredictOptions(opts...)
input := C.CString(text)
if po.Tokens == 0 {
po.Tokens = 99999999
}
floats := make([]float32, po.Tokens)
reverseCount := len(po.StopPrompts)
reversePrompt := make([]*C.char, reverseCount)
var pass **C.char
for i, s := range po.StopPrompts {
cs := C.CString(s)
reversePrompt[i] = cs
pass = &reversePrompt[0]
}
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount),
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), C.CString(po.LogitBias),
C.CString(po.PathPromptCache), C.bool(po.PromptCacheAll), C.bool(po.MLock), C.bool(po.MMap),
C.CString(po.MainGPU), C.CString(po.TensorSplit),
C.bool(po.PromptCacheRO),
C.CString(po.Grammar),
C.float(po.RopeFreqBase), C.float(po.RopeFreqScale), C.float(po.NegativePromptScale), C.CString(po.NegativePrompt),
)
ret := C.get_embeddings(params, l.state, (*C.float)(&floats[0]))
if ret != 0 {
return floats, fmt.Errorf("embedding inference failed")
}
return floats, nil
}
func (l *LLama) Eval(text string, opts ...PredictOption) error {
po := NewPredictOptions(opts...)
input := C.CString(text)
if po.Tokens == 0 {
po.Tokens = 99999999
}
reverseCount := len(po.StopPrompts)
reversePrompt := make([]*C.char, reverseCount)
var pass **C.char
for i, s := range po.StopPrompts {
cs := C.CString(s)
reversePrompt[i] = cs
pass = &reversePrompt[0]
}
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount),
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), C.CString(po.LogitBias),
C.CString(po.PathPromptCache), C.bool(po.PromptCacheAll), C.bool(po.MLock), C.bool(po.MMap),
C.CString(po.MainGPU), C.CString(po.TensorSplit),
C.bool(po.PromptCacheRO),
C.CString(po.Grammar),
C.float(po.RopeFreqBase), C.float(po.RopeFreqScale), C.float(po.NegativePromptScale), C.CString(po.NegativePrompt),
)
ret := C.eval(params, l.state, input)
if ret != 0 {
return fmt.Errorf("inference failed")
}
C.llama_free_params(params)
return nil
}
func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) {
po := NewPredictOptions(opts...)
if po.TokenCallback != nil {
setCallback(l.state, po.TokenCallback)
}
input := C.CString(text)
if po.Tokens == 0 {
po.Tokens = 99999999
}
out := make([]byte, po.Tokens)
reverseCount := len(po.StopPrompts)
reversePrompt := make([]*C.char, reverseCount)
var pass **C.char
for i, s := range po.StopPrompts {
cs := C.CString(s)
reversePrompt[i] = cs
pass = &reversePrompt[0]
}
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount),
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), C.CString(po.LogitBias),
C.CString(po.PathPromptCache), C.bool(po.PromptCacheAll), C.bool(po.MLock), C.bool(po.MMap),
C.CString(po.MainGPU), C.CString(po.TensorSplit),
C.bool(po.PromptCacheRO),
C.CString(po.Grammar),
C.float(po.RopeFreqBase), C.float(po.RopeFreqScale), C.float(po.NegativePromptScale), C.CString(po.NegativePrompt),
)
ret := C.llama_predict(params, l.state, (*C.char)(unsafe.Pointer(&out[0])), C.bool(po.DebugMode))
if ret != 0 {
return "", fmt.Errorf("inference failed")
}
res := C.GoString((*C.char)(unsafe.Pointer(&out[0])))
res = strings.TrimPrefix(res, " ")
res = strings.TrimPrefix(res, text)
res = strings.TrimPrefix(res, "\n")
for _, s := range po.StopPrompts {
res = strings.TrimRight(res, s)
}
C.llama_free_params(params)
if po.TokenCallback != nil {
setCallback(l.state, nil)
}
return res, nil
}
// tokenize has an interesting return property: negative lengths (potentially) have meaning. Therefore, return the length seperate from the slice and error - all three can be used together
func (l *LLama) TokenizeString(text string, opts ...PredictOption) (int32, []int32, error) {
po := NewPredictOptions(opts...)
input := C.CString(text)
if po.Tokens == 0 {
po.Tokens = 4096 // ???
}
out := make([]C.int, po.Tokens)
var fakeDblPtr **C.char
// copy pasted and modified minimally. Should I simplify down / do we need an "allocate defaults"
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
C.int(po.Batch), C.int(po.NKeep), fakeDblPtr, C.int(0),
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), C.CString(po.LogitBias),
C.CString(po.PathPromptCache), C.bool(po.PromptCacheAll), C.bool(po.MLock), C.bool(po.MMap),
C.CString(po.MainGPU), C.CString(po.TensorSplit),
C.bool(po.PromptCacheRO),
C.CString(po.Grammar),
C.float(po.RopeFreqBase), C.float(po.RopeFreqScale), C.float(po.NegativePromptScale), C.CString(po.NegativePrompt),
)
tokRet := C.llama_tokenize_string(params, l.state, (*C.int)(unsafe.Pointer(&out[0]))) //, C.int(po.Tokens), true)
if tokRet < 0 {
return int32(tokRet), []int32{}, fmt.Errorf("llama_tokenize_string returned negative count %d", tokRet)
}
// TODO: Is this loop still required to unbox cgo to go?
gTokRet := int32(tokRet)
gLenOut := min(len(out), int(gTokRet))
goSlice := make([]int32, gLenOut)
for i := 0; i < gLenOut; i++ {
goSlice[i] = int32(out[i])
}
return gTokRet, goSlice, nil
}
// CGo only allows us to use static calls from C to Go, we can't just dynamically pass in func's.
// This is the next best thing, we register the callbacks in this map and call tokenCallback from
// the C code. We also attach a finalizer to LLama, so it will unregister the callback when the
// garbage collection frees it.
// SetTokenCallback registers a callback for the individual tokens created when running Predict. It
// will be called once for each token. The callback shall return true as long as the model should
// continue predicting the next token. When the callback returns false the predictor will return.
// The tokens are just converted into Go strings, they are not trimmed or otherwise changed. Also
// the tokens may not be valid UTF-8.
// Pass in nil to remove a callback.
//
// It is save to call this method while a prediction is running.
func (l *LLama) SetTokenCallback(callback func(token string) bool) {
setCallback(l.state, callback)
}
var (
m sync.Mutex
callbacks = map[uintptr]func(string) bool{}
)
//export tokenCallback
func tokenCallback(statePtr unsafe.Pointer, token *C.char) bool {
m.Lock()
defer m.Unlock()
if callback, ok := callbacks[uintptr(statePtr)]; ok {
return callback(C.GoString(token))
}
return true
}
// setCallback can be used to register a token callback for LLama. Pass in a nil callback to
// remove the callback.
func setCallback(statePtr unsafe.Pointer, callback func(string) bool) {
m.Lock()
defer m.Unlock()
if callback == nil {
delete(callbacks, uintptr(statePtr))
} else {
callbacks[uintptr(statePtr)] = callback
}
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Go
1
https://gitee.com/heismart/go-llama.cpp.git
[email protected]:heismart/go-llama.cpp.git
heismart
go-llama.cpp
go-llama.cpp
master

搜索帮助