1 Star 0 Fork 23

happyhzq/future_agent

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
save_model.py 2.03 KB
一键复制 编辑 原始数据 按行查看 历史
邹吉华 提交于 2023-04-04 17:04 . 1.3.0
import os
import numpy as np
from stable_baselines3.common.results_plotter import load_results, ts2xy
from stable_baselines3.common.callbacks import BaseCallback
class SaveModelCallback(BaseCallback):
"""
Callback for saving a model (the check is done every ``check_freq`` steps)
based on the training reward (in practice, we recommend using ``EvalCallback``).
:param check_freq: (int)
:param log_dir: (str) Path to the folder where the model will be saved.
It must contains the file created by the ``Monitor`` wrapper.
:param verbose: (int)
"""
def __init__(self, check_freq, log_dir, verbose=1):
super(SaveModelCallback, self).__init__(verbose)
self.check_freq = check_freq
self.log_dir = log_dir
self.save_path = os.path.join(log_dir, 'best_model')
self.best_mean_reward = -np.inf
def _init_callback(self) -> None:
# Create folder if needed
if self.save_path is not None:
os.makedirs(self.save_path, exist_ok=True)
def _on_step(self) -> bool:
if self.n_calls % self.check_freq == 0:
# Retrieve training reward
x, y = ts2xy(load_results(self.log_dir), 'timesteps')
if len(x) > 0:
# Mean training reward over the last 100 episodes
mean_reward = np.mean(y[-100:])
if self.verbose > 0:
print("Num timesteps: {}".format(self.num_timesteps))
print("Best mean reward: {:.2f} - Last mean reward per episode: {:.2f}".format(self.best_mean_reward, mean_reward))
# New best model, you could save the agent here
if mean_reward > self.best_mean_reward:
self.best_mean_reward = mean_reward
# Example for saving best model
if self.verbose > 0:
print("Saving new best model at {} timesteps".format(x[-1]))
print("Saving new best model to {}.zip".format(self.save_path))
self.model.save(self.save_path)
return True
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/happyhzq/future_agent.git
[email protected]:happyhzq/future_agent.git
happyhzq
future_agent
future_agent
master

搜索帮助