代码拉取完成,页面将自动刷新
同步操作将从 anolis/cloud-kernel 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
/* gf128mul.c - GF(2^128) multiplication functions
*
* Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
* Copyright (c) 2006, Rik Snel <[email protected]>
*
* Based on Dr Brian Gladman's (GPL'd) work published at
* http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
* See the original copyright notice below.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*/
/*
---------------------------------------------------------------------------
Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
LICENSE TERMS
The free distribution and use of this software in both source and binary
form is allowed (with or without changes) provided that:
1. distributions of this source code include the above copyright
notice, this list of conditions and the following disclaimer;
2. distributions in binary form include the above copyright
notice, this list of conditions and the following disclaimer
in the documentation and/or other associated materials;
3. the copyright holder's name is not used to endorse products
built using this software without specific written permission.
ALTERNATIVELY, provided that this notice is retained in full, this product
may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GPL apply INSTEAD OF those given above.
DISCLAIMER
This software is provided 'as is' with no explicit or implied warranties
in respect of its properties, including, but not limited to, correctness
and/or fitness for purpose.
---------------------------------------------------------------------------
Issue 31/01/2006
This file provides fast multiplication in GF(2^128) as required by several
cryptographic authentication modes
*/
#include <crypto/gf128mul.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#define gf128mul_dat(q) { \
q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
}
/*
* Given a value i in 0..255 as the byte overflow when a field element
* in GF(2^128) is multiplied by x^8, the following macro returns the
* 16-bit value that must be XOR-ed into the low-degree end of the
* product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
*
* There are two versions of the macro, and hence two tables: one for
* the "be" convention where the highest-order bit is the coefficient of
* the highest-degree polynomial term, and one for the "le" convention
* where the highest-order bit is the coefficient of the lowest-degree
* polynomial term. In both cases the values are stored in CPU byte
* endianness such that the coefficients are ordered consistently across
* bytes, i.e. in the "be" table bits 15..0 of the stored value
* correspond to the coefficients of x^15..x^0, and in the "le" table
* bits 15..0 correspond to the coefficients of x^0..x^15.
*
* Therefore, provided that the appropriate byte endianness conversions
* are done by the multiplication functions (and these must be in place
* anyway to support both little endian and big endian CPUs), the "be"
* table can be used for multiplications of both "bbe" and "ble"
* elements, and the "le" table can be used for multiplications of both
* "lle" and "lbe" elements.
*/
#define xda_be(i) ( \
(i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
(i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
(i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
(i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
)
#define xda_le(i) ( \
(i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
(i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
(i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
(i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
)
static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
/*
* The following functions multiply a field element by x^8 in
* the polynomial field representation. They use 64-bit word operations
* to gain speed but compensate for machine endianness and hence work
* correctly on both styles of machine.
*/
static void gf128mul_x8_lle(be128 *x)
{
u64 a = be64_to_cpu(x->a);
u64 b = be64_to_cpu(x->b);
u64 _tt = gf128mul_table_le[b & 0xff];
x->b = cpu_to_be64((b >> 8) | (a << 56));
x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
}
static void gf128mul_x8_bbe(be128 *x)
{
u64 a = be64_to_cpu(x->a);
u64 b = be64_to_cpu(x->b);
u64 _tt = gf128mul_table_be[a >> 56];
x->a = cpu_to_be64((a << 8) | (b >> 56));
x->b = cpu_to_be64((b << 8) ^ _tt);
}
void gf128mul_x8_ble(le128 *r, const le128 *x)
{
u64 a = le64_to_cpu(x->a);
u64 b = le64_to_cpu(x->b);
u64 _tt = gf128mul_table_be[a >> 56];
r->a = cpu_to_le64((a << 8) | (b >> 56));
r->b = cpu_to_le64((b << 8) ^ _tt);
}
EXPORT_SYMBOL(gf128mul_x8_ble);
void gf128mul_lle(be128 *r, const be128 *b)
{
be128 p[8];
int i;
p[0] = *r;
for (i = 0; i < 7; ++i)
gf128mul_x_lle(&p[i + 1], &p[i]);
memset(r, 0, sizeof(*r));
for (i = 0;;) {
u8 ch = ((u8 *)b)[15 - i];
if (ch & 0x80)
be128_xor(r, r, &p[0]);
if (ch & 0x40)
be128_xor(r, r, &p[1]);
if (ch & 0x20)
be128_xor(r, r, &p[2]);
if (ch & 0x10)
be128_xor(r, r, &p[3]);
if (ch & 0x08)
be128_xor(r, r, &p[4]);
if (ch & 0x04)
be128_xor(r, r, &p[5]);
if (ch & 0x02)
be128_xor(r, r, &p[6]);
if (ch & 0x01)
be128_xor(r, r, &p[7]);
if (++i >= 16)
break;
gf128mul_x8_lle(r);
}
}
EXPORT_SYMBOL(gf128mul_lle);
void gf128mul_bbe(be128 *r, const be128 *b)
{
be128 p[8];
int i;
p[0] = *r;
for (i = 0; i < 7; ++i)
gf128mul_x_bbe(&p[i + 1], &p[i]);
memset(r, 0, sizeof(*r));
for (i = 0;;) {
u8 ch = ((u8 *)b)[i];
if (ch & 0x80)
be128_xor(r, r, &p[7]);
if (ch & 0x40)
be128_xor(r, r, &p[6]);
if (ch & 0x20)
be128_xor(r, r, &p[5]);
if (ch & 0x10)
be128_xor(r, r, &p[4]);
if (ch & 0x08)
be128_xor(r, r, &p[3]);
if (ch & 0x04)
be128_xor(r, r, &p[2]);
if (ch & 0x02)
be128_xor(r, r, &p[1]);
if (ch & 0x01)
be128_xor(r, r, &p[0]);
if (++i >= 16)
break;
gf128mul_x8_bbe(r);
}
}
EXPORT_SYMBOL(gf128mul_bbe);
/* This version uses 64k bytes of table space.
A 16 byte buffer has to be multiplied by a 16 byte key
value in GF(2^128). If we consider a GF(2^128) value in
the buffer's lowest byte, we can construct a table of
the 256 16 byte values that result from the 256 values
of this byte. This requires 4096 bytes. But we also
need tables for each of the 16 higher bytes in the
buffer as well, which makes 64 kbytes in total.
*/
/* additional explanation
* t[0][BYTE] contains g*BYTE
* t[1][BYTE] contains g*x^8*BYTE
* ..
* t[15][BYTE] contains g*x^120*BYTE */
struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
{
struct gf128mul_64k *t;
int i, j, k;
t = kzalloc(sizeof(*t), GFP_KERNEL);
if (!t)
goto out;
for (i = 0; i < 16; i++) {
t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
if (!t->t[i]) {
gf128mul_free_64k(t);
t = NULL;
goto out;
}
}
t->t[0]->t[1] = *g;
for (j = 1; j <= 64; j <<= 1)
gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
for (i = 0;;) {
for (j = 2; j < 256; j += j)
for (k = 1; k < j; ++k)
be128_xor(&t->t[i]->t[j + k],
&t->t[i]->t[j], &t->t[i]->t[k]);
if (++i >= 16)
break;
for (j = 128; j > 0; j >>= 1) {
t->t[i]->t[j] = t->t[i - 1]->t[j];
gf128mul_x8_bbe(&t->t[i]->t[j]);
}
}
out:
return t;
}
EXPORT_SYMBOL(gf128mul_init_64k_bbe);
void gf128mul_free_64k(struct gf128mul_64k *t)
{
int i;
for (i = 0; i < 16; i++)
kzfree(t->t[i]);
kzfree(t);
}
EXPORT_SYMBOL(gf128mul_free_64k);
void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
{
u8 *ap = (u8 *)a;
be128 r[1];
int i;
*r = t->t[0]->t[ap[15]];
for (i = 1; i < 16; ++i)
be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
*a = *r;
}
EXPORT_SYMBOL(gf128mul_64k_bbe);
/* This version uses 4k bytes of table space.
A 16 byte buffer has to be multiplied by a 16 byte key
value in GF(2^128). If we consider a GF(2^128) value in a
single byte, we can construct a table of the 256 16 byte
values that result from the 256 values of this byte.
This requires 4096 bytes. If we take the highest byte in
the buffer and use this table to get the result, we then
have to multiply by x^120 to get the final value. For the
next highest byte the result has to be multiplied by x^112
and so on. But we can do this by accumulating the result
in an accumulator starting with the result for the top
byte. We repeatedly multiply the accumulator value by
x^8 and then add in (i.e. xor) the 16 bytes of the next
lower byte in the buffer, stopping when we reach the
lowest byte. This requires a 4096 byte table.
*/
struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
{
struct gf128mul_4k *t;
int j, k;
t = kzalloc(sizeof(*t), GFP_KERNEL);
if (!t)
goto out;
t->t[128] = *g;
for (j = 64; j > 0; j >>= 1)
gf128mul_x_lle(&t->t[j], &t->t[j+j]);
for (j = 2; j < 256; j += j)
for (k = 1; k < j; ++k)
be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
out:
return t;
}
EXPORT_SYMBOL(gf128mul_init_4k_lle);
struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
{
struct gf128mul_4k *t;
int j, k;
t = kzalloc(sizeof(*t), GFP_KERNEL);
if (!t)
goto out;
t->t[1] = *g;
for (j = 1; j <= 64; j <<= 1)
gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
for (j = 2; j < 256; j += j)
for (k = 1; k < j; ++k)
be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
out:
return t;
}
EXPORT_SYMBOL(gf128mul_init_4k_bbe);
void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
{
u8 *ap = (u8 *)a;
be128 r[1];
int i = 15;
*r = t->t[ap[15]];
while (i--) {
gf128mul_x8_lle(r);
be128_xor(r, r, &t->t[ap[i]]);
}
*a = *r;
}
EXPORT_SYMBOL(gf128mul_4k_lle);
void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t)
{
u8 *ap = (u8 *)a;
be128 r[1];
int i = 0;
*r = t->t[ap[0]];
while (++i < 16) {
gf128mul_x8_bbe(r);
be128_xor(r, r, &t->t[ap[i]]);
}
*a = *r;
}
EXPORT_SYMBOL(gf128mul_4k_bbe);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。