1 Star 0 Fork 279

Eugenedntee/Senta

forked from 百度开源/Senta 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
lanch.py 4.61 KB
一键复制 编辑 原始数据 按行查看 历史
ChinaLiuHao 提交于 2020-05-21 16:51 . first commit
"""lanch.py"""
import argparse
import copy
import logging
import os
import subprocess
import sys
from senta.utils.args import ArgumentGroup, print_arguments
from senta.utils import log
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
multip_g = ArgumentGroup(parser, "multiprocessing",
"start paddle training using multi-processing mode.")
multip_g.add_arg("node_ips", str, None,
"paddle trainer ips")
multip_g.add_arg("node_id", int, None,
"the trainer id of the node for multi-node distributed training.")
multip_g.add_arg("print_config", bool, True,
"print the config of multi-processing mode.")
multip_g.add_arg("current_node_ip", str, None,
"the ip of current node.")
multip_g.add_arg("split_log_path", str, "log",
"log path for each trainer.")
multip_g.add_arg("log_prefix", str, "",
"the prefix name of job log.")
multip_g.add_arg("nproc_per_node", int, 8,
"the number of process to use on each node.")
multip_g.add_arg("selected_gpus", str, "0,1,2,3,4,5,6,7",
"the gpus selected to use.")
multip_g.add_arg("training_script", str, None, "the program/script to be lauched "
"in parallel followed by all the arguments", positional_arg=True)
multip_g.add_arg("training_script_args", str, None,
"training script args", positional_arg=True, nargs=argparse.REMAINDER)
# yapf: enable
def start_procs(args):
"""start process"""
procs = []
log_fns = []
default_env = os.environ.copy()
node_id = args.node_id
node_ips = [x.strip() for x in args.node_ips.split(',')]
current_ip = args.current_node_ip
num_nodes = len(node_ips)
selected_gpus = [x.strip() for x in args.selected_gpus.split(',')]
selected_gpu_num = len(selected_gpus)
all_trainer_endpoints = ""
for ip in node_ips:
for i in range(args.nproc_per_node):
if all_trainer_endpoints != "":
all_trainer_endpoints += ","
all_trainer_endpoints += "%s:618%d" % (ip, i)
nranks = num_nodes * args.nproc_per_node
gpus_per_proc = args.nproc_per_node % selected_gpu_num
if gpus_per_proc == 0:
gpus_per_proc = selected_gpu_num // args.nproc_per_node
else:
gpus_per_proc = selected_gpu_num // args.nproc_per_node + 1
selected_gpus_per_proc = [selected_gpus[i:i + gpus_per_proc] for i in range(0, len(selected_gpus), gpus_per_proc)]
if args.print_config:
logging.info("all_trainer_endpoints: %s" % all_trainer_endpoints)
logging.info("node_id: %s" % node_id)
logging.info("current_ip: %s" % node_id)
logging.info("num_nodes: %s" % num_nodes)
logging.info("node_ips: %s" % node_ips)
logging.info("gpus_per_proc: %s" % gpus_per_proc)
logging.info("selected_gpus_per_proc: %s" % selected_gpus_per_proc)
logging.info("nranks: %s" % nranks)
current_env = copy.copy(default_env)
procs = []
cmds = []
log_fns = []
for i in range(0, args.nproc_per_node):
trainer_id = node_id * args.nproc_per_node + i
current_env.update({
"FLAGS_selected_gpus": "%s" % ",".join([str(s) for s in selected_gpus_per_proc[i]]),
"PADDLE_TRAINER_ID": "%d" % trainer_id,
"PADDLE_CURRENT_ENDPOINT": "%s:618%d" % (current_ip, i),
"PADDLE_TRAINERS_NUM": "%d" % nranks,
"PADDLE_TRAINER_ENDPOINTS": all_trainer_endpoints,
"PADDLE_NODES_NUM": "%d" % num_nodes
})
cmd = [sys.executable, "-u",
args.training_script] + args.training_script_args
cmds.append(cmd)
if args.split_log_path:
fn = open("%s/%s.job.log.%d" % (args.split_log_path, args.log_prefix, trainer_id), "a")
log_fns.append(fn)
process = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn)
else:
process = subprocess.Popen(cmd, env=current_env)
procs.append(process)
for i in range(len(procs)):
proc = procs[i]
proc.wait()
if len(log_fns) > 0:
log_fns[i].close()
if proc.returncode != 0:
logging.info("proc %d run failed" % i)
raise subprocess.CalledProcessError(returncode=procs[i].returncode,
cmd=cmds[i])
else:
logging.info("proc %d run success" % i)
def main(args):
"""main"""
if args.print_config:
print_arguments(args)
start_procs(args)
if __name__ == "__main__":
"""start"""
lanch_args = parser.parse_args()
log.init_log(os.path.join(lanch_args.split_log_path, "lanch"), level=logging.DEBUG)
main(lanch_args)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/eugenedntee/Senta.git
[email protected]:eugenedntee/Senta.git
eugenedntee
Senta
Senta
master

搜索帮助