代码拉取完成,页面将自动刷新
import torch
import copy
import math
from typing import Any
import argparse
from .library import flux_models, flux_train_utils, flux_utils, sd3_train_utils, strategy_base, strategy_flux, train_util
from .train_network import NetworkTrainer, clean_memory_on_device, setup_parser
from accelerate import Accelerator
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
class FluxNetworkTrainer(NetworkTrainer):
def __init__(self):
super().__init__()
self.sample_prompts_te_outputs = None
def assert_extra_args(self, args, train_dataset_group):
super().assert_extra_args(args, train_dataset_group)
# sdxl_train_util.verify_sdxl_training_args(args)
if args.fp8_base_unet:
args.fp8_base = True # if fp8_base_unet is enabled, fp8_base is also enabled for FLUX.1
if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs:
logger.warning(
"cache_text_encoder_outputs_to_disk is enabled, so cache_text_encoder_outputs is also enabled / cache_text_encoder_outputs_to_diskが有効になっているため、cache_text_encoder_outputsも有効になります"
)
args.cache_text_encoder_outputs = True
if args.cache_text_encoder_outputs:
assert (
train_dataset_group.is_text_encoder_output_cacheable()
), "when caching Text Encoder output, either caption_dropout_rate, shuffle_caption, token_warmup_step or caption_tag_dropout_rate cannot be used / Text Encoderの出力をキャッシュするときはcaption_dropout_rate, shuffle_caption, token_warmup_step, caption_tag_dropout_rateは使えません"
# prepare CLIP-L/T5XXL training flags
self.train_clip_l = not args.network_train_unet_only
self.train_t5xxl = False # default is False even if args.network_train_unet_only is False
if args.max_token_length is not None:
logger.warning("max_token_length is not used in Flux training")
assert not args.split_mode or not args.cpu_offload_checkpointing, (
"split_mode and cpu_offload_checkpointing cannot be used together"
)
train_dataset_group.verify_bucket_reso_steps(32) # TODO check this
def get_flux_model_name(self, args):
if "schnell" in args.pretrained_model_name_or_path:
return "schnell"
elif "open" in args.pretrained_model_name_or_path.lower():
return "schnell"
else:
return "dev"
def load_target_model(self, args, weight_dtype, accelerator):
# currently offload to cpu for some models
name = self.get_flux_model_name(args)
# if the file is fp8 and we are using fp8_base, we can load it as is (fp8)
loading_dtype = None if args.fp8_base else weight_dtype
# if we load to cpu, flux.to(fp8) takes a long time, so we should load to gpu in future
model = flux_utils.load_flow_model(
name, args.pretrained_model_name_or_path, loading_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors
)
if args.fp8_base:
# check dtype of model
if model.dtype == torch.float8_e4m3fnuz or model.dtype == torch.float8_e5m2fnuz:
raise ValueError(f"Unsupported fp8 model dtype: {model.dtype}")
elif model.dtype == torch.float8_e4m3fn or model.dtype == torch.float8_e5m2:
logger.info(f"Loaded {model.dtype} FLUX model")
if args.split_mode:
model = self.prepare_split_model(model, args, weight_dtype, accelerator)
clip_l = flux_utils.load_clip_l(args.clip_l, weight_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors)
clip_l.eval()
# if the file is fp8 and we are using fp8_base (not unet), we can load it as is (fp8)
if args.fp8_base and not args.fp8_base_unet:
loading_dtype = None # as is
else:
loading_dtype = weight_dtype
# loading t5xxl to cpu takes a long time, so we should load to gpu in future
t5xxl = flux_utils.load_t5xxl(args.t5xxl, loading_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors)
t5xxl.eval()
if args.fp8_base and not args.fp8_base_unet:
# check dtype of model
if t5xxl.dtype == torch.float8_e4m3fnuz or t5xxl.dtype == torch.float8_e5m2 or t5xxl.dtype == torch.float8_e5m2fnuz:
raise ValueError(f"Unsupported fp8 model dtype: {t5xxl.dtype}")
elif t5xxl.dtype == torch.float8_e4m3fn:
logger.info("Loaded fp8 T5XXL model")
ae = flux_utils.load_ae(name, args.ae, weight_dtype, "cpu", disable_mmap=args.disable_mmap_load_safetensors)
return flux_utils.MODEL_VERSION_FLUX_V1, [clip_l, t5xxl], ae, model
def prepare_split_model(self, model, args, weight_dtype, accelerator):
from accelerate import init_empty_weights
logger.info("prepare split model")
with init_empty_weights():
flux_upper = flux_models.FluxUpper(model.params)
flux_lower = flux_models.FluxLower(model.params)
sd = model.state_dict()
# lower (trainable)
logger.info("load state dict for lower")
flux_lower.load_state_dict(sd, strict=False, assign=True)
flux_lower.to(dtype=weight_dtype)
# upper (frozen)
logger.info("load state dict for upper")
flux_upper.load_state_dict(sd, strict=False, assign=True)
logger.info("prepare upper model")
if args.fp8_base:
if args.fp8_dtype and args.fp8_dtype.lower() == "e5m2":
target_dtype = torch.float8_e5m2
else:
target_dtype = torch.float8_e4m3fn
else:
target_dtype =weight_dtype
flux_upper.to(accelerator.device, dtype=target_dtype)
flux_upper.eval()
if args.fp8_base:
# this is required to run on fp8
flux_upper = accelerator.prepare(flux_upper)
flux_upper.to("cpu")
self.flux_upper = flux_upper
del model # we don't need model anymore
clean_memory_on_device(accelerator.device)
logger.info("split model prepared")
return flux_lower
def get_tokenize_strategy(self, args):
name = self.get_flux_model_name(args)
if args.t5xxl_max_token_length is None:
if name == "schnell":
t5xxl_max_token_length = 256
else:
t5xxl_max_token_length = 512
else:
t5xxl_max_token_length = args.t5xxl_max_token_length
logger.info(f"t5xxl_max_token_length: {t5xxl_max_token_length}")
return strategy_flux.FluxTokenizeStrategy(t5xxl_max_token_length, args.tokenizer_cache_dir)
def get_tokenizers(self, tokenize_strategy: strategy_flux.FluxTokenizeStrategy):
return [tokenize_strategy.clip_l, tokenize_strategy.t5xxl]
def get_latents_caching_strategy(self, args):
latents_caching_strategy = strategy_flux.FluxLatentsCachingStrategy(args.cache_latents_to_disk, args.vae_batch_size, False)
return latents_caching_strategy
def get_text_encoding_strategy(self, args):
return strategy_flux.FluxTextEncodingStrategy(apply_t5_attn_mask=args.apply_t5_attn_mask)
def post_process_network(self, args, accelerator, network, text_encoders, unet):
# check t5xxl is trained or not
self.train_t5xxl = network.train_t5xxl
if self.train_t5xxl and args.cache_text_encoder_outputs:
raise ValueError(
"T5XXL is trained, so cache_text_encoder_outputs cannot be used / T5XXL学習時はcache_text_encoder_outputsは使用できません"
)
def get_models_for_text_encoding(self, args, accelerator, text_encoders):
if args.cache_text_encoder_outputs:
if self.train_clip_l and not self.train_t5xxl:
return text_encoders[0:1] # only CLIP-L is needed for encoding because T5XXL is cached
else:
return None # no text encoders are needed for encoding because both are cached
else:
return text_encoders # both CLIP-L and T5XXL are needed for encoding
def get_text_encoders_train_flags(self, args, text_encoders):
return [self.train_clip_l, self.train_t5xxl]
def get_text_encoder_outputs_caching_strategy(self, args):
if args.cache_text_encoder_outputs:
# if the text encoders is trained, we need tokenization, so is_partial is True
return strategy_flux.FluxTextEncoderOutputsCachingStrategy(
args.cache_text_encoder_outputs_to_disk,
None,
False,
is_partial=self.train_clip_l or self.train_t5xxl,
apply_t5_attn_mask=args.apply_t5_attn_mask,
)
else:
return None
def cache_text_encoder_outputs_if_needed(
self, args, accelerator: Accelerator, unet, vae, text_encoders, dataset: train_util.DatasetGroup, weight_dtype
):
if args.cache_text_encoder_outputs:
if not args.lowram:
# reduce memory consumption
logger.info("move vae and unet to cpu to save memory")
org_vae_device = vae.device
org_unet_device = unet.device
vae.to("cpu")
unet.to("cpu")
clean_memory_on_device(accelerator.device)
# When TE is not be trained, it will not be prepared so we need to use explicit autocast
logger.info("move text encoders to gpu")
text_encoders[0].to(accelerator.device, dtype=weight_dtype) # always not fp8
text_encoders[1].to(accelerator.device)
if text_encoders[1].dtype == torch.float8_e4m3fn:
# if we load fp8 weights, the model is already fp8, so we use it as is
self.prepare_text_encoder_fp8(1, text_encoders[1], text_encoders[1].dtype, weight_dtype)
else:
# otherwise, we need to convert it to target dtype
text_encoders[1].to(weight_dtype)
with accelerator.autocast():
dataset.new_cache_text_encoder_outputs(text_encoders, accelerator.is_main_process)
# cache sample prompts
if args.sample_prompts is not None:
logger.info(f"cache Text Encoder outputs for sample prompt: {args.sample_prompts}")
tokenize_strategy: strategy_flux.FluxTokenizeStrategy = strategy_base.TokenizeStrategy.get_strategy()
text_encoding_strategy: strategy_flux.FluxTextEncodingStrategy = strategy_base.TextEncodingStrategy.get_strategy()
prompts = []
for line in args.sample_prompts:
line = line.strip()
if len(line) > 0 and line[0] != "#":
prompts.append(line)
# preprocess prompts
for i in range(len(prompts)):
prompt_dict = prompts[i]
if isinstance(prompt_dict, str):
from .library.train_util import line_to_prompt_dict
prompt_dict = line_to_prompt_dict(prompt_dict)
prompts[i] = prompt_dict
assert isinstance(prompt_dict, dict)
# Adds an enumerator to the dict based on prompt position. Used later to name image files. Also cleanup of extra data in original prompt dict.
prompt_dict["enum"] = i
prompt_dict.pop("subset", None)
sample_prompts_te_outputs = {} # key: prompt, value: text encoder outputs
with accelerator.autocast(), torch.no_grad():
for prompt_dict in prompts:
for p in [prompt_dict.get("prompt", ""), prompt_dict.get("negative_prompt", "")]:
if p not in sample_prompts_te_outputs:
logger.info(f"cache Text Encoder outputs for prompt: {p}")
tokens_and_masks = tokenize_strategy.tokenize(p)
sample_prompts_te_outputs[p] = text_encoding_strategy.encode_tokens(
tokenize_strategy, text_encoders, tokens_and_masks, args.apply_t5_attn_mask
)
self.sample_prompts_te_outputs = sample_prompts_te_outputs
accelerator.wait_for_everyone()
# move back to cpu
if not self.is_train_text_encoder(args):
logger.info("move CLIP-L back to cpu")
text_encoders[0].to("cpu")
logger.info("move t5XXL back to cpu")
text_encoders[1].to("cpu")
clean_memory_on_device(accelerator.device)
if not args.lowram:
logger.info("move vae and unet back to original device")
vae.to(org_vae_device)
unet.to(org_unet_device)
else:
# Text Encoder
text_encoders[0].to(accelerator.device, dtype=weight_dtype)
text_encoders[1].to(accelerator.device)
def sample_images(self, accelerator, args, epoch, global_step, flux, ae, text_encoder, sample_prompts_te_outputs, validation_settings):
text_encoders = text_encoder # for compatibility
text_encoders = self.get_models_for_text_encoding(args, accelerator, text_encoders)
if not args.split_mode:
image_tensors = flux_train_utils.sample_images(
accelerator, args, epoch, global_step, flux, ae, text_encoders, sample_prompts_te_outputs, validation_settings)
clean_memory_on_device(accelerator.device)
return image_tensors
class FluxUpperLowerWrapper(torch.nn.Module):
def __init__(self, flux_upper: flux_models.FluxUpper, flux_lower: flux_models.FluxLower, device: torch.device):
super().__init__()
self.flux_upper = flux_upper
self.flux_lower = flux_lower
self.target_device = device
def forward(self, img, img_ids, txt, txt_ids, timesteps, y, guidance=None, txt_attention_mask=None):
self.flux_lower.to("cpu")
clean_memory_on_device(self.target_device)
self.flux_upper.to(self.target_device)
img, txt, vec, pe = self.flux_upper(img, img_ids, txt, txt_ids, timesteps, y, guidance, txt_attention_mask)
self.flux_upper.to("cpu")
clean_memory_on_device(self.target_device)
self.flux_lower.to(self.target_device)
return self.flux_lower(img, txt, vec, pe, txt_attention_mask)
wrapper = FluxUpperLowerWrapper(self.flux_upper, flux, accelerator.device)
clean_memory_on_device(accelerator.device)
image_tensors = flux_train_utils.sample_images(
accelerator, args, epoch, global_step, wrapper, ae, text_encoders, sample_prompts_te_outputs, validation_settings
)
clean_memory_on_device(accelerator.device)
return image_tensors
def get_noise_scheduler(self, args: argparse.Namespace, device: torch.device) -> Any:
noise_scheduler = sd3_train_utils.FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000, shift=args.discrete_flow_shift)
self.noise_scheduler_copy = copy.deepcopy(noise_scheduler)
return noise_scheduler
def encode_images_to_latents(self, args, accelerator, vae, images):
return vae.encode(images)
def shift_scale_latents(self, args, latents):
return latents
def get_noise_pred_and_target(
self,
args,
accelerator,
noise_scheduler,
latents,
batch,
text_encoder_conds,
unet: flux_models.Flux,
network,
weight_dtype,
train_unet,
):
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# get noisy model input and timesteps
noisy_model_input, timesteps, sigmas = flux_train_utils.get_noisy_model_input_and_timesteps(
args, noise_scheduler, latents, noise, accelerator.device, weight_dtype
)
# pack latents and get img_ids
packed_noisy_model_input = flux_utils.pack_latents(noisy_model_input) # b, c, h*2, w*2 -> b, h*w, c*4
packed_latent_height, packed_latent_width = noisy_model_input.shape[2] // 2, noisy_model_input.shape[3] // 2
img_ids = flux_utils.prepare_img_ids(bsz, packed_latent_height, packed_latent_width).to(device=accelerator.device)
# get guidance
# ensure guidance_scale in args is float
guidance_vec = torch.full((bsz,), float(args.guidance_scale), device=accelerator.device)
# ensure the hidden state will require grad
if args.gradient_checkpointing:
noisy_model_input.requires_grad_(True)
for t in text_encoder_conds:
if t.dtype.is_floating_point:
t.requires_grad_(True)
img_ids.requires_grad_(True)
guidance_vec.requires_grad_(True)
# Predict the noise residual
l_pooled, t5_out, txt_ids, t5_attn_mask = text_encoder_conds
if not args.apply_t5_attn_mask:
t5_attn_mask = None
if not args.split_mode:
# normal forward
with accelerator.autocast():
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transformer model (we should not keep it but I want to keep the inputs same for the model for testing)
model_pred = unet(
img=packed_noisy_model_input,
img_ids=img_ids,
txt=t5_out,
txt_ids=txt_ids,
y=l_pooled,
timesteps=timesteps / 1000,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask,
)
else:
# split forward to reduce memory usage
assert network.train_blocks == "single", "train_blocks must be single for split mode"
with accelerator.autocast():
# move flux lower to cpu, and then move flux upper to gpu
unet.to("cpu")
clean_memory_on_device(accelerator.device)
self.flux_upper.to(accelerator.device)
# upper model does not require grad
with torch.no_grad():
intermediate_img, intermediate_txt, vec, pe = self.flux_upper(
img=packed_noisy_model_input,
img_ids=img_ids,
txt=t5_out,
txt_ids=txt_ids,
y=l_pooled,
timesteps=timesteps / 1000,
guidance=guidance_vec,
txt_attention_mask=t5_attn_mask,
)
# move flux upper back to cpu, and then move flux lower to gpu
self.flux_upper.to("cpu")
clean_memory_on_device(accelerator.device)
unet.to(accelerator.device)
# lower model requires grad
intermediate_img.requires_grad_(True)
intermediate_txt.requires_grad_(True)
vec.requires_grad_(True)
pe.requires_grad_(True)
model_pred = unet(img=intermediate_img, txt=intermediate_txt, vec=vec, pe=pe, txt_attention_mask=t5_attn_mask)
# unpack latents
model_pred = flux_utils.unpack_latents(model_pred, packed_latent_height, packed_latent_width)
# apply model prediction type
model_pred, weighting = flux_train_utils.apply_model_prediction_type(args, model_pred, noisy_model_input, sigmas)
# flow matching loss: this is different from SD3
target = noise - latents
return model_pred, target, timesteps, None, weighting
def post_process_loss(self, loss, args, timesteps, noise_scheduler):
return loss
def get_sai_model_spec(self, args):
return train_util.get_sai_model_spec(None, args, False, True, False, flux="dev")
def update_metadata(self, metadata, args):
metadata["ss_apply_t5_attn_mask"] = args.apply_t5_attn_mask
metadata["ss_weighting_scheme"] = args.weighting_scheme
metadata["ss_logit_mean"] = args.logit_mean
metadata["ss_logit_std"] = args.logit_std
metadata["ss_mode_scale"] = args.mode_scale
metadata["ss_guidance_scale"] = args.guidance_scale
metadata["ss_timestep_sampling"] = args.timestep_sampling
metadata["ss_sigmoid_scale"] = args.sigmoid_scale
metadata["ss_model_prediction_type"] = args.model_prediction_type
metadata["ss_discrete_flow_shift"] = args.discrete_flow_shift
def is_text_encoder_not_needed_for_training(self, args):
return args.cache_text_encoder_outputs and not self.is_train_text_encoder(args)
def prepare_text_encoder_grad_ckpt_workaround(self, index, text_encoder):
if index == 0: # CLIP-L
return super().prepare_text_encoder_grad_ckpt_workaround(index, text_encoder)
else: # T5XXL
text_encoder.encoder.embed_tokens.requires_grad_(True)
def prepare_text_encoder_fp8(self, index, text_encoder, te_weight_dtype, weight_dtype):
if index == 0: # CLIP-L
logger.info(f"prepare CLIP-L for fp8: set to {te_weight_dtype}, set embeddings to {weight_dtype}")
text_encoder.to(te_weight_dtype) # fp8
text_encoder.text_model.embeddings.to(dtype=weight_dtype)
else: # T5XXL
def prepare_fp8(text_encoder, target_dtype):
def forward_hook(module):
def forward(hidden_states):
hidden_gelu = module.act(module.wi_0(hidden_states))
hidden_linear = module.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = module.dropout(hidden_states)
hidden_states = module.wo(hidden_states)
return hidden_states
return forward
for module in text_encoder.modules():
if module.__class__.__name__ in ["T5LayerNorm", "Embedding"]:
# print("set", module.__class__.__name__, "to", target_dtype)
module.to(target_dtype)
if module.__class__.__name__ in ["T5DenseGatedActDense"]:
# print("set", module.__class__.__name__, "hooks")
module.forward = forward_hook(module)
if flux_utils.get_t5xxl_actual_dtype(text_encoder) == torch.float8_e4m3fn and text_encoder.dtype == weight_dtype:
logger.info(f"T5XXL already prepared for fp8")
else:
logger.info(f"prepare T5XXL for fp8: set to {te_weight_dtype}, set embeddings to {weight_dtype}, add hooks")
text_encoder.to(te_weight_dtype) # fp8
prepare_fp8(text_encoder, weight_dtype)
def setup_parser() -> argparse.ArgumentParser:
parser = setup_parser()
flux_train_utils.add_flux_train_arguments(parser)
parser.add_argument(
"--split_mode",
action="store_true",
help="[EXPERIMENTAL] use split mode for Flux model, network arg `train_blocks=single` is required"
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
train_util.verify_command_line_training_args(args)
args = train_util.read_config_from_file(args, parser)
trainer = FluxNetworkTrainer()
trainer.train(args)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。