代码拉取完成,页面将自动刷新
同步操作将从 星火/量化金融 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# coding=utf-8
from __future__ import print_function, absolute_import, unicode_literals
import numpy as np
import pandas as pd
from gm.api import *
'''
本策略首先计算了SHFE.rb1801过去300个1min收盘价的均值和标准差
并用均值加减2和3个标准差得到网格的区间分界线,分别配以0.3和0.5的仓位权重
然后根据价格所在的区间来配置仓位:
(n+k1*std,n+k2*std],(n+k2*std,n+k3*std],(n+k3*std,n+k4*std],(n+k4*std,n+k5*std],(n+k5*std,n+k6*std]
(n为收盘价的均值,std为收盘价的标准差,k1-k6分别为[-40, -3, -2, 2, 3, 40],其中-40和40为上下界,无实际意义)
[-0.5, -0.3, 0.0, 0.3, 0.5](资金比例,此处负号表示开空仓)
回测数据为:SHFE.rb1801的1min数据
回测时间为:2017-07-01 08:00:00到2017-10-01 16:00:00
'''
def init(context):
context.symbol = 'SHFE.rb1801'
# 订阅SHFE.rb1801, bar频率为1min
subscribe(symbols=context.symbol, frequency='60s')
# 获取过去300个价格数据
timeseries = history_n(symbol=context.symbol, frequency='60s', count=300, fields='close', fill_missing='Last',
end_time='2017-07-01 08:00:00', df=True)['close'].values
# 获取网格区间分界线
context.band = np.mean(timeseries) + np.array([-40, -3, -2, 2, 3, 40]) * np.std(timeseries)
# 设置网格的仓位
context.weight = [0.5, 0.3, 0.0, 0.3, 0.5]
def on_bar(context, bars):
bar = bars[0]
# 根据价格落在(-40,-3],(-3,-2],(-2,2],(2,3],(3,40]的区间范围来获取最新收盘价所在的价格区间
grid = pd.cut([bar.close], context.band, labels=[0, 1, 2, 3, 4])[0]
# 获取多仓仓位
position_long = context.account().position(symbol=context.symbol, side=PositionSide_Long)
# 获取空仓仓位
position_short = context.account().position(symbol=context.symbol, side=PositionSide_Short)
# 若无仓位且价格突破则按照设置好的区间开仓
if not position_long and not position_short and grid != 2:
# 大于3为在中间网格的上方,做多
if grid >= 3:
order_target_percent(symbol=context.symbol, percent=context.weight[grid], order_type=OrderType_Market,
position_side=PositionSide_Long)
print(context.symbol, '以市价单开多仓到仓位', context.weight[grid])
if grid <= 1:
order_target_percent(symbol=context.symbol, percent=context.weight[grid], order_type=OrderType_Market,
position_side=PositionSide_Short)
print(context.symbol, '以市价单开空仓到仓位', context.weight[grid])
# 持有多仓的处理
elif position_long:
if grid >= 3:
order_target_percent(symbol=context.symbol, percent=context.weight[grid], order_type=OrderType_Market,
position_side=PositionSide_Long)
print(context.symbol, '以市价单调多仓到仓位', context.weight[grid])
# 等于2为在中间网格,平仓
elif grid == 2:
order_target_percent(symbol=context.symbol, percent=0, order_type=OrderType_Market,
position_side=PositionSide_Long)
print(context.symbol, '以市价单全平多仓')
# 小于1为在中间网格的下方,做空
elif grid <= 1:
order_target_percent(symbol=context.symbol, percent=0, order_type=OrderType_Market,
position_side=PositionSide_Long)
print(context.symbol, '以市价单全平多仓')
order_target_percent(symbol=context.symbol, percent=context.weight[grid], order_type=OrderType_Market,
position_side=PositionSide_Short)
print(context.symbol, '以市价单开空仓到仓位', context.weight[grid])
# 持有空仓的处理
elif position_short:
# 小于1为在中间网格的下方,做空
if grid <= 1:
order_target_percent(symbol=context.symbol, percent=context.weight[grid], order_type=OrderType_Market,
position_side=PositionSide_Short)
print(context.symbol, '以市价单调空仓到仓位', context.weight[grid])
# 等于2为在中间网格,平仓
elif grid == 2:
order_target_percent(symbol=context.symbol, percent=0, order_type=OrderType_Market,
position_side=PositionSide_Short)
print(context.symbol, '以市价单全平空仓')
# 大于3为在中间网格的上方,做多
elif grid >= 3:
order_target_percent(symbol=context.symbol, percent=0, order_type=OrderType_Market,
position_side=PositionSide_Short)
print(context.symbol, '以市价单全平空仓')
order_target_percent(symbol=context.symbol, percent=context.weight[grid], order_type=OrderType_Market,
position_side=PositionSide_Long)
print(context.symbol, '以市价单开多仓到仓位', context.weight[grid])
if __name__ == '__main__':
'''
strategy_id策略ID,由系统生成
filename文件名,请与本文件名保持一致
mode实时模式:MODE_LIVE回测模式:MODE_BACKTEST
token绑定计算机的ID,可在系统设置-密钥管理中生成
backtest_start_time回测开始时间
backtest_end_time回测结束时间
backtest_adjust股票复权方式不复权:ADJUST_NONE前复权:ADJUST_PREV后复权:ADJUST_POST
backtest_initial_cash回测初始资金
backtest_commission_ratio回测佣金比例
backtest_slippage_ratio回测滑点比例
'''
run(strategy_id='a5299b24-8b44-11e9-a4d4-b499baf0193a',
filename='网格交易策略.py',
mode=MODE_BACKTEST,
token='90be3f863b23ab3c1ef68d1f9b8dc06e4bebb30d',
backtest_start_time='2016-07-01 08:00:00',
backtest_end_time='2018-10-01 16:00:00',
backtest_adjust=ADJUST_PREV,
backtest_initial_cash=100000000,
backtest_commission_ratio=0.0001,
backtest_slippage_ratio=0.0001)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。