1 Star 1 Fork 0

短短的路走走停停/project_5991540

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
VRPTW_TS.cpp 18.14 KB
一键复制 编辑 原始数据 按行查看 历史
dengfaheng 提交于 2019-05-25 15:50 . VRPTEST
//*****************************************************************
//禁忌搜索算法解决带时间窗的车辆路径问题(VRPTW_TS)
//*****************************************************************
//Reference
//J-F Cordeau, Laporte, G., & Mercier, A. (2001). A Unified Tabu Search Heuristic for Vehicle Routing Problems with Time Windows. The Journal of the Operational Research Society, 52(8), 928-936. Retrieved from http://www.jstor.org/stable/822953
//Solomon, M. (1987). Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints. Operations Research, 35(2), 254-265. Retrieved from http://www.jstor.org/stable/170697
//*****************************************************************
//输出样例(R101.txt)
//*****************************************************************
//The Minimum Total Distance = 1664.75
//Concrete Schedule of Each Route as Following :
//No.1 : 1 -> 46 -> 84 -> 100 -> 95 -> 97 -> 1
//No.2 : 1 -> 28 -> 32 -> 89 -> 8 -> 1
//No.3 : 1 -> 41 -> 54 -> 27 -> 1
//No.4 : 1 -> 63 -> 12 -> 91 -> 11 -> 1
//No.5 : 1 -> 3 -> 22 -> 74 -> 42 -> 57 -> 5 -> 1
//No.6 : 1 -> 15 -> 45 -> 39 -> 44 -> 59 -> 1
//No.7 : 1 -> 37 -> 48 -> 20 -> 9 -> 47 -> 18 -> 1
//No.8 : 1 -> 13 -> 77 -> 79 -> 35 -> 36 -> 78 -> 1
//No.9 : 1 -> 66 -> 72 -> 10 -> 67 -> 2 -> 1
//No.10 : 1 -> 64 -> 65 -> 50 -> 49 -> 1
//No.11 : 1 -> 29 -> 30 -> 80 -> 51 -> 69 -> 1
//No.12 : 1 -> 40 -> 24 -> 68 -> 56 -> 26 -> 1
//No.13 : 1 -> 34 -> 82 -> 4 -> 55 -> 25 -> 81 -> 1
//No.14 : 1 -> 70 -> 31 -> 52 -> 21 -> 33 -> 71 -> 1
//No.15 : 1 -> 96 -> 99 -> 62 -> 87 -> 92 -> 101 -> 1
//No.16 : 1 -> 83 -> 19 -> 85 -> 61 -> 90 -> 1
//No.17 : 1 -> 73 -> 76 -> 23 -> 75 -> 1
//No.18 : 1 -> 53 -> 7 -> 1
//No.19 : 1 -> 93 -> 43 -> 16 -> 88 -> 58 -> 98 -> 14 -> 1
//No.20 : 1 -> 60 -> 6 -> 17 -> 86 -> 38 -> 94 -> 1
//Check_Ans = 1664.75
//*****************************************************************
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <cmath>
#include <ctime>
#include <vector>
#include <iomanip>
using namespace std;
#define cin fin
//#define cout fout
#define INF 0x3ffffff
#define Customer_Number 100//算例中除仓库以外的顾客节点个数
#define Capacity 200//车辆最大容量
#define Iter_Max 2000//搜索迭代次数
#define Tabu_tenure 20//禁忌时长
ifstream fin(".\\input\\R102.txt");
//ofstream fout("R101_Output.txt");
struct Customer_Type {
int Number;//节点自身编号
int R;//节点所属车辆路径编号
double X, Y;//节点横纵坐标
double Begin, End, Service;//节点被访问的最早时间,最晚时间以及服务时长
double Demand;//节点的需求
} Customer[Customer_Number + 10];//仓库节点编号为1,顾客节点编号为2-101
struct Route_Type {
double Load;//单挑路径承载量
double SubT;//单条路径违反各节点时间窗约束时长总和
double Dis;//单条路径总长度
vector<Customer_Type> V;//单条路径上顾客节点序列
} Route[Customer_Number + 10], Route_Ans[Customer_Number + 10];//车辆路径及搜索到最优的车辆路径
int Vehicle_Number = Customer_Number;//由于无车辆数量限制,因此将上限设为顾客总数
int Tabu[Customer_Number + 10][Customer_Number + 10];//禁忌表用于禁忌节点插入操作
int TabuCreate[Customer_Number + 10];//禁忌表用于紧急拓展新路径或使用新车辆
double Ans;
double Alpha = 1, Beta = 1, Sita = 0.5;
double Graph[Customer_Number + 10][Customer_Number + 10];
//************************************************************
double Distance ( Customer_Type C1, Customer_Type C2 ) {//计算图上各节点见的距离
return sqrt ( ( C1.X - C2.X ) * ( C1.X - C2.X ) + ( C1.Y - C2.Y ) * ( C1.Y - C2.Y ) );
}
//************************************************************
double Calculation ( Route_Type R[], int Cus, int NewR ) {//计算路径规划R的目标函数值
//目标函数主要由三个部分组成:D路径总长度(优化目标),Q超出容量约束总量,T超出时间窗约束总量
//目标函数结构为 f(R) = D + Alpha * Q + Beta * T, 第一项为问题最小化目标,后两项为惩罚部分
//期中Alpha与Beta为变量,分别根据当前解是否满足两个约束进行变化(在Check函数中更新,由于Check针对每轮迭代得到的解)
double Q = 0;
double T = 0;
double D = 0;
//计算单条路径超出容量约束的总量
for ( int i = 1; i <= Vehicle_Number; ++i )
if ( R[i].V.size() > 2 && R[i].Load > Capacity )
Q = Q + R[i].Load - Capacity;
//计算单条路径上各个节点超出时间窗约束的总量(仅更新进行移除和插入节点操作的两条路径)
double ArriveTime = 0;
R[Customer[Cus].R].SubT = 0;
for ( int j = 1; j < R[Customer[Cus].R].V.size(); ++j ) {
ArriveTime = ArriveTime + R[Customer[Cus].R].V[j - 1].Service + Graph[R[Customer[Cus].R].V[j - 1].Number][R[Customer[Cus].R].V[j].Number];
if ( ArriveTime > R[Customer[Cus].R].V[j].End )
R[Customer[Cus].R].SubT = R[Customer[Cus].R].SubT + ArriveTime - R[Customer[Cus].R].V[j].End;
else if ( ArriveTime < R[Customer[Cus].R].V[j].Begin )
ArriveTime = R[Customer[Cus].R].V[j].Begin;
}
ArriveTime = 0;
R[NewR].SubT = 0;
for ( int j = 1; j < R[NewR].V.size(); ++j ) {
ArriveTime = ArriveTime + R[NewR].V[j - 1].Service + Graph[R[NewR].V[j - 1].Number][R[NewR].V[j].Number];
if ( ArriveTime > R[NewR].V[j].End )
R[NewR].SubT = R[NewR].SubT + ArriveTime - R[NewR].V[j].End;
else if ( ArriveTime < R[NewR].V[j].Begin )
ArriveTime = R[NewR].V[j].Begin;
}
for ( int i = 1; i <= Vehicle_Number; ++i )
T += R[i].SubT;
//计算路径总长度
for ( int i = 1; i <= Vehicle_Number; ++i )
D += R[i].Dis;
return D + Alpha * Q + Beta * T;
}
//************************************************************
bool Check ( Route_Type R[] ) {//检验路径规划R是否满足所有约束
double Q = 0;
double T = 0;
double D = 0;
//检查是否满足容量约束
for ( int i = 1; i <= Vehicle_Number; ++i )
if ( R[i].V.size() > 2 && R[i].Load > Capacity )
Q = Q + R[i].Load - Capacity;
//检查是否满足时间窗约束
for ( int i = 1; i <= Vehicle_Number; ++i )
T += R[i].SubT;
//分别根据约束满足的情况更新Alpha和Beta值
if ( Q == 0 && Alpha >= 0.001 )
Alpha /= ( 1 + Sita );
else if ( Q != 0 && Alpha <= 2000 )
Alpha *= ( 1 + Sita );
if ( T == 0 && Beta >= 0.001 )
Beta /= ( 1 + Sita );
else if ( T != 0 && Beta <= 2000 )
Beta *= ( 1 + Sita );
if ( T == 0 && Q == 0 )
return true;
else
return false;
}
//************************************************************
void Copy_Route() {//将路径规划Route的内容复制给路径规划Route_Ans
for ( int i = 1; i <= Vehicle_Number; ++i ) {
Route_Ans[i].Load = Route[i].Load;
Route_Ans[i].V.clear();
for ( int j = 0; j < Route[i].V.size(); ++j )
Route_Ans[i].V.push_back ( Route[i].V[j] );
}
}
//************************************************************
void Output ( Route_Type R[] ) {//结果输出
cout << "************************************************************" << endl;
cout << "The Minimum Total Distance = " << Ans << endl;
cout << "Concrete Schedule of Each Route as Following : " << endl;
int M = 0;
for ( int i = 1; i <= Vehicle_Number; ++i )
if ( R[i].V.size() > 2 ) {
M++;
cout << "No." << M << " : ";
for ( int j = 0; j < R[i].V.size() - 1; ++j )
cout << R[i].V[j].Number << " -> ";
cout << R[i].V[R[i].V.size() - 1].Number << endl;
}
//检验距离计算是否正确
double Check_Ans = 0;
for ( int i = 1; i <= Vehicle_Number; ++i )
for ( int j = 1; j < R[i].V.size(); ++j )
Check_Ans += Graph[R[i].V[j - 1].Number][R[i].V[j].Number];
cout << "Check_Ans = " << Check_Ans << endl;
cout << "************************************************************" << endl;
}
//************************************************************
void ReadIn_and_Initialization() {//数据读入及初始化
for ( int i = 1; i <= Customer_Number + 1; ++i )
cin >> Customer[i].Number >> Customer[i].X >> Customer[i].Y >> Customer[i].Demand
>> Customer[i].Begin >> Customer[i].End >> Customer[i].Service;
//初始化每条路径,默认路径收尾为仓库,且首仓库最早最晚时间均为原仓库最早时间,尾仓库则均为原仓库最晚时间
Customer[1].R = -1;
for ( int i = 1; i <= Vehicle_Number; ++i ) {
if ( !Route[i].V.empty() )
Route[i].V.clear();
Route[i].V.push_back ( Customer[1] );
Route[i].V.push_back ( Customer[1] );
Route[i].V[0].End = Route[i].V[0].Begin;
Route[i].V[1].Begin = Route[i].V[1].End;
Route[i].Load = 0;
}
Ans = INF;
for ( int i = 1; i <= Customer_Number + 1; ++i )
for ( int j = 1; j <= Customer_Number + 1; ++j )
Graph[i][j] = Distance ( Customer[i], Customer[j] );
}
//************************************************************
void Construction() {//构造初始路径规划
int Customer_Set[Customer_Number + 10];
for ( int i = 1; i <= Customer_Number; ++i )
Customer_Set[i] = i + 1;
int Sizeof_Customer_Set = Customer_Number;
int Current_Route = 1;
//以满足容量约束为目的的随机初始化
//即随机挑选一个节点插入到第m条路径中,若超过容量约束,则插入第m+1条路径
//且插入路径的位置由该路径上已存在的各节点最早时间的升序决定
while ( Sizeof_Customer_Set > 0 ) {
int K = rand() % Sizeof_Customer_Set + 1;
int C = Customer_Set[K];
Customer_Set[K] = Customer_Set[Sizeof_Customer_Set];
Sizeof_Customer_Set--;
/*int K = rand() % Sizeof_Customer_Set + 1;
int C = Customer_Set[K];
Customer_Set[K] = Customer_Set[Sizeof_Customer_Set];
Sizeof_Customer_Set--;*/
//将当前服务过的节点赋值为最末节点值,数组容量减1
if ( Route[Current_Route].Load + Customer[C].Demand > Capacity )
Current_Route++;
for ( int i = 0; i < Route[Current_Route].V.size() - 1; i++ )
if ( ( Route[Current_Route].V[i].Begin <= Customer[C].Begin ) && ( Customer[C].Begin <= Route[Current_Route].V[i + 1].Begin ) ) {
Route[Current_Route].V.insert ( Route[Current_Route].V.begin() + i + 1, Customer[C] );
Route[Current_Route].Load += Customer[C].Demand;
Customer[C].R = Current_Route;
break;
}
}
//初始化计算超过容量约束的总量和超过时间窗约束的总量
for ( int i = 1; i <= Vehicle_Number; ++i ) {
double ArriveTime = Route[i].V[0].Begin;
Route[i].SubT = 0;
Route[i].Dis = 0;
for ( int j = 1; j < Route[i].V.size(); ++j ) {
ArriveTime = ArriveTime + Route[i].V[j - 1].Service + Graph[Route[i].V[j - 1].Number][Route[i].V[j].Number];
Route[i].Dis += Graph[Route[i].V[j - 1].Number][Route[i].V[j].Number];
if ( ArriveTime > Route[i].V[j].End )
Route[i].SubT = Route[i].SubT + ArriveTime - Route[i].V[j].End;
else if ( ArriveTime < Route[i].V[j].Begin )
ArriveTime = Route[i].V[j].Begin;
}
}
}
//************************************************************
void Tabu_Search() {//禁忌搜索
//禁忌搜索采取插入算子,即从一条路径中选择一点插入到另一条路径中
//在该操作下形成的邻域中选取使目标函数最小化的解
double Temp1;
double Temp2;
for ( int i = 2; i <= Customer_Number + 1; ++i ) {
for ( int j = 1; j <= Vehicle_Number; ++j )
Tabu[i][j] = 0;
TabuCreate[i] = 0;
}
int Iteration = 0;
while ( Iteration < Iter_Max ) {
Iteration++;
int BestC = 0, BestR = 0, BestP = 0, P;
double BestV = INF;
for ( int i = 2; i <= Customer_Number + 1; ++i ) {
for ( int j = 1; j < Route[Customer[i].R].V.size(); ++j )
if ( Route[Customer[i].R].V[j].Number == i ) {
P = j;
break;
}
//从节点原路径中去除该节点的需求
Route[Customer[i].R].Load -= Customer[i].Demand;
//从节点原路径中去除该节点所组成的路径并重组
Route[Customer[i].R].Dis = Route[Customer[i].R].Dis - Graph[Route[Customer[i].R].V[P - 1].Number][Route[Customer[i].R].V[P].Number]
- Graph[Route[Customer[i].R].V[P].Number][Route[Customer[i].R].V[P + 1].Number] + Graph[Route[Customer[i].R].V[P - 1].Number][Route[Customer[i].R].V[P + 1].Number];
//从节点原路径中去除节点
Route[Customer[i].R].V.erase ( Route[Customer[i].R].V.begin() + P );
for ( int j = 1; j <= Vehicle_Number; ++j )
//禁忌插入操作,后者为禁止使用新的车辆
if ( ( Route[j].V.size() > 2 && Tabu[i][j] <= Iteration ) || ( Route[j].V.size() == 2 && TabuCreate[i] <= Iteration ) ) {
for ( int l = 1; l < Route[j].V.size(); ++l )
if ( Customer[i].R != j ) {
//在节点新路径中加上该节点的需求
Route[j].Load += Customer[i].Demand;
//在节点新路径中加上该节点插入后所组成的路径并断开原路径
Route[j].Dis = Route[j].Dis - Graph[Route[j].V[l - 1].Number][Route[j].V[l].Number]
+ Graph[Route[j].V[l - 1].Number][Customer[i].Number] + Graph[Route[j].V[l].Number][Customer[i].Number];
//在节点新路径中插入节点
Route[j].V.insert ( Route[j].V.begin() + l, Customer[i] );
Temp1 = Route[Customer[i].R].SubT;
Temp2 = Route[j].SubT;
double TempV = Calculation ( Route, i, j );
if ( TempV < BestV ) {
BestV = TempV;
BestC = i, BestR = j, BestP = l;
}
//节点新路径复原
Route[Customer[i].R].SubT = Temp1;
Route[j].SubT = Temp2;
Route[j].V.erase ( Route[j].V.begin() + l );
Route[j].Load -= Customer[i].Demand;
Route[j].Dis = Route[j].Dis + Graph[Route[j].V[l - 1].Number][Route[j].V[l].Number]
- Graph[Route[j].V[l - 1].Number][Customer[i].Number] - Graph[Route[j].V[l].Number][Customer[i].Number];
}
}
//节点原路径复原
Route[Customer[i].R].V.insert ( Route[Customer[i].R].V.begin() + P, Customer[i] );
Route[Customer[i].R].Load += Customer[i].Demand;
Route[Customer[i].R].Dis = Route[Customer[i].R].Dis + Graph[Route[Customer[i].R].V[P - 1].Number][Route[Customer[i].R].V[P].Number]
+ Graph[Route[Customer[i].R].V[P].Number][Route[Customer[i].R].V[P + 1].Number] - Graph[Route[Customer[i].R].V[P - 1].Number][Route[Customer[i].R].V[P + 1].Number];
}
if ( Route[BestR].V.size() == 2 )
TabuCreate[BestC] = Iteration + 2 * Tabu_tenure + rand() % 10;
Tabu[BestC][Customer[BestC].R] = Iteration + Tabu_tenure + rand() % 10;
for ( int i = 1; i < Route[Customer[BestC].R].V.size(); ++i )
if ( Route[Customer[BestC].R].V[i].Number == BestC ) {
P = i;
break;
}
//依据上述循环中挑选的结果,生成新的总体路径规划
//更新改变过的各单挑路径的载重,距离长度,超出时间窗重量
Route[Customer[BestC].R].Load -= Customer[BestC].Demand;
Route[Customer[BestC].R].Dis = Route[Customer[BestC].R].Dis - Graph[Route[Customer[BestC].R].V[P - 1].Number][Route[Customer[BestC].R].V[P].Number]
- Graph[Route[Customer[BestC].R].V[P].Number][Route[Customer[BestC].R].V[P + 1].Number] + Graph[Route[Customer[BestC].R].V[P - 1].Number][Route[Customer[BestC].R].V[P + 1].Number];
Route[Customer[BestC].R].V.erase ( Route[Customer[BestC].R].V.begin() + P );
Route[BestR].Dis = Route[BestR].Dis - Graph[Route[BestR].V[BestP - 1].Number][Route[BestR].V[BestP].Number]
+ Graph[Route[BestR].V[BestP - 1].Number][Customer[BestC].Number] + Graph[Route[BestR].V[BestP].Number][Customer[BestC].Number];
Route[BestR].Load += Customer[BestC].Demand;
Route[BestR].V.insert ( Route[BestR].V.begin() + BestP, Customer[BestC] );
double ArriveTime = 0;
Route[BestR].SubT = 0;
for ( int j = 1; j < Route[BestR].V.size(); ++j ) {
ArriveTime = ArriveTime + Route[BestR].V[j - 1].Service + Graph[Route[BestR].V[j - 1].Number][Route[BestR].V[j].Number];
if ( ArriveTime > Route[BestR].V[j].End )
Route[BestR].SubT = Route[BestR].SubT + ArriveTime - Route[BestR].V[j].End;
else if ( ArriveTime < Route[BestR].V[j].Begin )
ArriveTime = Route[BestR].V[j].Begin;
}
ArriveTime = 0;
Route[Customer[BestC].R].SubT = 0;
for ( int j = 1; j < Route[Customer[BestC].R].V.size(); ++j ) {
ArriveTime = ArriveTime + Route[Customer[BestC].R].V[j - 1].Service + Graph[Route[Customer[BestC].R].V[j - 1].Number][Route[Customer[BestC].R].V[j].Number];
if ( ArriveTime > Route[Customer[BestC].R].V[j].End )
Route[Customer[BestC].R].SubT = Route[Customer[BestC].R].SubT + ArriveTime - Route[Customer[BestC].R].V[j].End;
else if ( ArriveTime < Route[Customer[BestC].R].V[j].Begin )
ArriveTime = Route[Customer[BestC].R].V[j].Begin;
}
//更新被操作的节点所属路径编号
Customer[BestC].R = BestR;
//如果当前解合法且较优则更新存储结果
if ( ( Check ( Route ) == true ) && ( Ans > BestV ) ) {
Copy_Route();
Ans = BestV;
cout.setf(std::ios::left);
cout<<"Tabu Search "<<setw(4)<<Iteration<<" Times, Total Cost = "<<setw(10)<<Ans<<endl;
}
}
}
//************************************************************
int main() {
clock_t Start, Finish;
Start = clock();
srand ( ( unsigned ) time ( NULL ) );
ReadIn_and_Initialization();
cout<<"ReadIn Finished!"<<endl;
Construction();
cout<<"Tabu_Search Started......"<<endl;
Tabu_Search();
Output ( Route_Ans );
Finish = clock();
cout << "Total Running Time = " << ( Finish - Start ) / 1000.0 << " s"<<endl;
system("pause");
system("pause");
return 0;
}
//************************************************************
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C++
1
https://gitee.com/dengfaheng/VRPExperience.git
[email protected]:dengfaheng/VRPExperience.git
dengfaheng
VRPExperience
project_5991540
master

搜索帮助