1 Star 0 Fork 0

cuglujun/TensorRT-CenterNet

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
eval_coco.py 6.00 KB
一键复制 编辑 原始数据 按行查看 历史
from ctypes import c_float,c_int,Structure,POINTER,CDLL,RTLD_GLOBAL,c_char_p,c_void_p,c_long
import cv2
import numpy as np
import os
from pycocotools.cocoeval import COCOeval
import pycocotools.coco as coco
from tqdm import tqdm
import sys
class BOX(Structure):
_fields_ = [("x1", c_float),
("y1", c_float),
("x2", c_float),
("y2", c_float)]
class landmarks(Structure):
_fields_ = [("x", c_float),
("y", c_float)]
class DETECTION(Structure):
_fields_ = [("bbox", BOX),
("classId", c_int),
("prob", c_float),
("marks", landmarks * 5)]
class detRESULT(Structure):
_fields_ = [("num", c_int),
("det", POINTER(DETECTION))]
lib=CDLL("lib/libctdet.so",RTLD_GLOBAL)
init_net=lib.initNet
init_net.argtypes = [c_char_p]
init_net.restype = c_void_p
free=lib.free
free.argtypes = [c_void_p]
free_result=lib.freeResult
free_result.argtypes = [POINTER(detRESULT)]
free_net=lib.freeNet
free_net.argtypes = [c_void_p]
inference=lib.predict
inference.argtypes=[c_void_p,c_void_p,c_int,c_int]
inference.restype=detRESULT
ndarray_image = lib.ndarrayToImage
ndarray_image.argtypes = [POINTER(c_float), POINTER(c_long), POINTER(c_long)]
ndarray_image.restype = c_void_p
set_device = lib.setDevice
set_device.argtypes = [c_int]
def ndarray_to_image(img):
img = img.astype(np.float32)
data = img.ctypes.data_as(POINTER(c_float))
image_p = ndarray_image(data, img.ctypes.shape, img.ctypes.strides)
return image_p
def img_preprocess(image, target_shape=(512,512),mean = (0.485,0.456,0.406),std =(0.229,0.224,0.225)):
mean = np.array(mean,dtype=np.float32).reshape([1,1,3])
std = np.array(std,dtype=np.float32).reshape([1,1,3])
h_target, w_target = target_shape
h_org, w_org, _ = image.shape
resize_ratio = min(1.0 * w_target / w_org, 1.0 * h_target / h_org)
resize_w = int(resize_ratio * w_org)
resize_h = int(resize_ratio * h_org)
image_resized = cv2.resize(image, (resize_w, resize_h))
image_paded = np.full((h_target, w_target, 3), 0).astype(np.uint8)
dw = int((w_target - resize_w) / 2)
dh = int((h_target - resize_h) / 2)
image_paded[dh:resize_h+dh, dw:resize_w+dw,:] = image_resized
image_paded = (image_paded.astype(np.float32)/255. - mean) / std
return image_paded
def show_img(pred,image):
image_h, image_w, _ = image.shape
bbox_thick = int(1.0 * (image_h + image_w) / 600)
for j in range(pred.num):
x1, y1, x2, y2, classId, prob = pred.det[j].bbox.x1, pred.det[j].bbox.y1, \
pred.det[j].bbox.x2, pred.det[j].bbox.y2, pred.det[j].classId, pred.det[j].prob
cls=int(classId)
cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)),(255,0,0), bbox_thick)
cv2.putText(image, '%s %f'%(class_name[cls],prob), (int(x2), int(y2)), 0, 0.001 * image_h, (0, 255, 0),
bbox_thick // 2)
return image
def top_k(pred,K=100):
boxs_list = []
for j in range(pred.num):
x1, y1, x2, y2, classId, prob = pred.det[j].bbox.x1, pred.det[j].bbox.y1, \
pred.det[j].bbox.x2, pred.det[j].bbox.y2, pred.det[j].classId, pred.det[j].prob
boxs_list.append([x1,y1,x2,y2,classId,prob])
boxs_list = np.array(boxs_list)
if len(boxs_list)>K:
prob = boxs_list[:,-1]
top_arg = np.argsort(prob)[::-1][:K]
boxs_list = boxs_list[top_arg]
return boxs_list
### you need config include/ctdetConfig.h classNum and visThresh
## for coco
class_name = [
'person', 'bicycle', 'car', 'motorcycle', 'airplane',
'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse',
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack',
'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis',
'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove',
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass',
'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich',
'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv',
'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase',
'scissors', 'teddy bear', 'hair drier', 'toothbrush']
valid_ids = [
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 27, 28, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 67, 70,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 84, 85, 86, 87, 88, 89, 90]
coco_val_ann = '/data/DataSet/coco2017/annotations/instances_val2017.json'
coco_val_dir = '/data/DataSet/coco2017/val2017'
data = coco.COCO(coco_val_ann)
set_device(0)
net = init_net(bytes(sys.argv[1],encoding = "utf8"))
detections = []
for img_id in tqdm(data.getImgIds()):
img_name = os.path.join(coco_val_dir,data.loadImgs(ids=[img_id])[0]['file_name']).strip()
frame = cv2.imread(img_name)
img_h, img_w, _ = frame.shape
img = img_preprocess(frame, (512, 512), mean=(0.408, 0.447, 0.470), std=(0.289, 0.274, 0.278))
img_p = ndarray_to_image(img)
pred = inference(net,img_p,img_w,img_h)
boxs = top_k(pred)
for i,det in enumerate(boxs):
x, y, x1, y1, cls, conf = det[:6]
detection = {
"image_id": img_id,
"category_id": int(valid_ids[int(cls)]),
"bbox": [x, y, x1 - x, y1 - y],
"score": float("{:.2f}".format(conf))
}
detections.append(detection)
free_result(pred)
free(img_p)
coco_dets = data.loadRes(detections)
coco_eval = COCOeval(data, coco_dets, "bbox")
coco_eval.evaluate()
coco_eval.accumulate()
coco_eval.summarize()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/cuglujun/TensorRT-CenterNet.git
[email protected]:cuglujun/TensorRT-CenterNet.git
cuglujun
TensorRT-CenterNet
TensorRT-CenterNet
master

搜索帮助