1 Star 0 Fork 59

重楼/captcha_trainer

forked from kerlomz/captcha_trainer 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
tf_onnx_util.py 4.78 KB
一键复制 编辑 原始数据 按行查看 历史
kerlomz 提交于 2020-11-15 21:49 . 兼容tf2+
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author: kerlomz <[email protected]>
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
"""
python -m tf2onnx.convert : tool to convert a frozen tensorflow graph to onnx
"""
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import sys
import tensorflow as tf
from tf2onnx.tfonnx import process_tf_graph, tf_optimize
from tf2onnx import constants, logging, utils, optimizer
from tf_graph_util import convert_variables_to_constants
# from tensorflow.python.framework.graph_util import convert_variables_to_constants
# pylint: disable=unused-argument
_HELP_TEXT = """
Usage Examples:
python -m tf2onnx.convert --saved-model saved_model_dir --output model.onnx
python -m tf2onnx.convert --input frozen_graph.pb --inputs X:0 --outputs output:0 --output model.onnx
python -m tf2onnx.convert --checkpoint checkpoint.meta --inputs X:0 --outputs output:0 --output model.onnx
For help and additional information see:
https://github.com/onnx/tensorflow-onnx
If you run into issues, open an issue here:
https://github.com/onnx/tensorflow-onnx/issues
"""
logger = tf.compat.v1.logging
# logger = logging.getLogger(constants.TF2ONNX_PACKAGE_NAME)
def freeze_session(sess, keep_var_names=None, output_names=None, clear_devices=True):
"""Freezes the state of a session into a pruned computation graph."""
output_names = [i.split(':')[:-1][0] for i in output_names]
graph = sess.graph
with graph.as_default():
freeze_var_names = list(set(v.op.name for v in tf.compat.v1.global_variables()).difference(keep_var_names or []))
output_names = output_names or []
output_names += [v.op.name for v in tf.compat.v1.global_variables()]
input_graph_def = graph.as_graph_def(add_shapes=True)
if clear_devices:
for node in input_graph_def.node:
node.device = ""
frozen_graph = convert_variables_to_constants(sess, input_graph_def, output_names, freeze_var_names)
return frozen_graph
def remove_redundant_inputs(frozen_graph, input_names):
"""Remove redundant inputs not in frozen graph."""
frozen_inputs = []
# get inputs in frozen graph
for n in frozen_graph.node:
for inp in input_names:
if utils.node_name(inp) == n.name:
frozen_inputs.append(inp)
deleted_inputs = list(set(input_names) - set(frozen_inputs))
if deleted_inputs:
logger.warning("inputs [%s] is not in frozen graph, delete them", ",".join(deleted_inputs))
return frozen_inputs
def from_graphdef(sess, graph_def, model_path, input_names, output_names):
"""Load tensorflow graph from graphdef."""
# make sure we start with clean default graph
with tf.io.gfile.GFile(model_path, 'rb') as f:
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
frozen_graph = freeze_session(sess, output_names=output_names)
input_names = remove_redundant_inputs(frozen_graph, input_names)
# clean up
return frozen_graph, input_names, output_names
def convert_onnx(sess, graph_def, input_path, inputs_op, outputs_op):
graphdef = input_path
if inputs_op:
inputs_op, shape_override = utils.split_nodename_and_shape(inputs_op)
if outputs_op:
outputs_op = outputs_op.split(",")
# logging.basicConfig(level=logging.get_verbosity_level(True))
utils.set_debug_mode(True)
graph_def, inputs_op, outputs_op = from_graphdef(sess, graph_def, graphdef, inputs_op, outputs_op)
model_path = graphdef
graph_def = tf_optimize(inputs_op, outputs_op, graph_def, True)
with tf.Graph().as_default() as tf_graph:
tf.compat.v1.import_graph_def(graph_def, name='')
with tf.compat.v1.Session(graph=tf_graph):
g = process_tf_graph(tf_graph,
continue_on_error=True,
target=",".join(constants.DEFAULT_TARGET),
opset=11,
custom_op_handlers=None,
extra_opset=None,
shape_override=None,
input_names=inputs_op,
output_names=outputs_op,
inputs_as_nchw=None)
onnx_graph = optimizer.optimize_graph(g)
model_proto = onnx_graph.make_model("converted from {}".format(model_path))
# write onnx graph
logger.info("")
logger.info("Successfully converted TensorFlow model %s to ONNX", model_path)
# if args.output:
output_path = input_path.replace(".pb", ".onnx")
utils.save_protobuf(output_path, model_proto)
logger.info("ONNX model is saved at %s", output_path)
if __name__ == "__main__":
pass
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/chong_lou/captcha_trainer.git
[email protected]:chong_lou/captcha_trainer.git
chong_lou
captcha_trainer
captcha_trainer
master

搜索帮助