1 Star 0 Fork 59

重楼/captcha_trainer

forked from kerlomz/captcha_trainer 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
pretreatment.py 18.72 KB
一键复制 编辑 原始数据 按行查看 历史
kerlomz 提交于 2020-11-15 21:49 . 兼容tf2+
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author: kerlomz <[email protected]>
import cv2
import random
import PIL
import numpy as np
from math import floor, ceil
class Pretreatment(object):
"""
预处理功能函数集合(目前仅用于训练过程中随机启动)
"""
def __init__(self, origin):
self.origin = origin
def get(self):
return self.origin
def binarization(self, value: object, modify=False) -> np.ndarray:
if isinstance(value, list) and len(value) == 2:
value = random.randint(value[0], value[1])
elif isinstance(value, int):
value = value if (0 < value < 255) else -1
if value == -1:
return self.origin
ret, _binarization = cv2.threshold(self.origin, value, 255, cv2.THRESH_BINARY)
if modify:
self.origin = _binarization
return _binarization
def median_blur(self, value, modify=False) -> np.ndarray:
if not value:
return self.origin
value = random.randint(0, value)
value = value + 1 if value % 2 == 0 else value
_smooth = cv2.medianBlur(self.origin, value)
if modify:
self.origin = _smooth
return _smooth
def gaussian_blur(self, value, modify=False) -> np.ndarray:
if not value:
return self.origin
value = random.randint(0, value)
value = value + 1 if value % 2 == 0 else value
_blur = cv2.GaussianBlur(self.origin, (value, value), 0)
if modify:
self.origin = _blur
return _blur
def equalize_hist(self, value, modify=False) -> np.ndarray:
if not value:
return self.origin
_equalize_hist = cv2.equalizeHist(self.origin)
if modify:
self.origin = _equalize_hist
return _equalize_hist
def laplacian(self, value, modify=False) -> np.ndarray:
if not value:
return self.origin
_laplacian = cv2.convertScaleAbs(cv2.Laplacian(self.origin, cv2.CV_16S, ksize=3))
if modify:
self.origin = _laplacian
return _laplacian
def rotate(self, value, modify=False) -> np.ndarray:
if not value:
return self.origin
size = self.origin.shape
scale = 1.0
height, width = size[0], size[1]
center = (width // 2, height // 2)
if bool(random.getrandbits(1)):
angle = random.randint(-20, 20)
else:
angle = -random.randint(-value, value)
m = cv2.getRotationMatrix2D(center, angle, scale)
_rotate = cv2.warpAffine(self.origin, m, (width, height), borderValue=(255, 255, 255))
# angle = -random.randint(-value, value)
# if abs(angle) > 15:
# _img = cv2.resize(self.origin, (width, int(height / 2)))
# center = (width / 4, height / 4)
# else:
# _img = cv2.resize(self.origin, (width, height))
# center = (width / 2, height / 2)
# _img = cv2.resize(self.origin, (width, height))
# m = cv2.getRotationMatrix2D(center, angle, 1.0)
# _rotate = cv2.warpAffine(_img, m, (width, height), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE)
if modify:
self.origin = _rotate
return _rotate
# def warp_perspective(self, modify=False) -> np.ndarray:
# size = self.origin.shape
# height, width = size[0], size[1]
# size0 = random.randint(3, 9)
# size1 = random.randint(25, 30)
# size2 = random.randint(23, 27)
# size3 = random.randint(33, 37)
# pts1 = np.float32([[0, 0], [0, size1], [size1, size1], [size1, 0]])
# pts2 = np.float32([[size0, 0], [-size0, size1], [size2, size1], [size3, 0]])
# is_random = bool(random.getrandbits(1))
# param = (pts2, pts1) if is_random else (pts1, pts2)
# warp_mat = cv2.getPerspectiveTransform(*param)
# dst = cv2.warpPerspective(self.origin, warp_mat, (width, height))
# if modify:
# self.origin = dst
# return dst
def sp_noise(self, prob, modify=False):
size = self.origin.shape
output = np.zeros(self.origin.shape, np.uint8)
thres = 1 - prob
for i in range(size[0]):
for j in range(size[1]):
rdn = random.random()
if rdn < prob:
output[i][j] = 0
elif rdn > thres:
output[i][j] = 255
else:
output[i][j] = self.origin[i][j]
if modify:
self.origin = output
return output
def random_brightness(self, modify=False):
beta = np.random.uniform(-84, 84)
output = np.uint8(np.clip((self.origin + beta), 0, 255))
if modify:
self.origin = output
return output
def random_saturation(self, modify=False):
if len(self.origin.shape) < 3:
return self.origin
factor = np.random.uniform(0.3, 2.0)
output = self.origin
output[:, :, 1] = np.clip(output[:, :, 1] * factor, 0, 255)
if modify:
self.origin = output
return output
def random_hue(self, max_delta=18, modify=False):
if len(self.origin.shape) < 3:
return self.origin
delta = np.random.uniform(-max_delta, max_delta)
output = self.origin
output[:, :, 0] = (output[:, :, 0] + delta) % 180.0
if modify:
self.origin = output
return output
def random_gamma(self, modify=False):
if len(self.origin.shape) < 3:
return self.origin
gamma = np.random.uniform(0.25, 2.0)
gamma_inv = 1.0 / gamma
table = np.array([((i / 255.0) ** gamma_inv) * 255 for i in np.arange(0, 256)]).astype("uint8")
output = cv2.LUT(self.origin, table)
if modify:
self.origin = output
return output
def random_channel_swap(self, modify=False):
if len(self.origin.shape) < 3:
return self.origin
permutations = ((0, 2, 1),
(1, 0, 2), (1, 2, 0),
(2, 0, 1), (2, 1, 0))
i = np.random.randint(5)
order = permutations[i]
output = self.origin[:, :, order]
if modify:
self.origin = output
return output
def random_blank(self, max_int, modify=False):
if len(self.origin.shape) < 2:
return self.origin
new_shape = list(self.origin.shape)
new_shape[0] = random.randint(1, 15)
blank_down = np.ones(new_shape, dtype=np.uint8) * 255
output = np.concatenate([self.origin, blank_down], axis=0)
new_shape[0] = random.randint(1, 15)
blank_up = np.ones(new_shape, dtype=np.uint8) * 255
output = np.concatenate([blank_up, output], axis=0)
new_shape = list(output.shape)
new_shape[1] = random.randint(1, 15)
blank_left = np.ones(new_shape, dtype=np.uint8) * 255
output = np.concatenate([blank_left, output], axis=1)
new_shape[1] = random.randint(1, 15)
blank_right = np.ones(new_shape, dtype=np.uint8) * 255
output = np.concatenate([output, blank_right], axis=1)
if modify:
self.origin = output
return output
def random_transition(self, max_int, modify=False):
size = self.origin.shape
height, width = size[0], size[1]
crop_range_w = random.randint(0, max_int)
crop_range_w = crop_range_w if bool(random.getrandbits(1)) else -crop_range_w
crop_range_h = random.randint(0, max_int)
crop_range_h = crop_range_h if bool(random.getrandbits(1)) else -crop_range_h
m = np.float32([[1, 0, crop_range_w], [0, 1, crop_range_h]])
random_color = random.randint(240, 255)
random_color = (random_color, random_color, random_color) if bool(random.getrandbits(1)) else (0, 0, 0)
output = cv2.warpAffine(self.origin, m, (width, height), borderValue=random_color)
if modify:
self.origin = output
return output
def warp_perspective(self, modify=False):
tmp = PIL.Image.fromarray(self.origin)
w, h = tmp.size
magnitude = random.randint(2, 6)
grid_width = random.randint(5, 13)
grid_height = random.randint(3, 10)
horizontal_tiles = grid_width
vertical_tiles = grid_height
width_of_square = int(floor(w / float(horizontal_tiles)))
height_of_square = int(floor(h / float(vertical_tiles)))
width_of_last_square = w - (width_of_square * (horizontal_tiles - 1))
height_of_last_square = h - (height_of_square * (vertical_tiles - 1))
dimensions = []
for vertical_tile in range(vertical_tiles):
for horizontal_tile in range(horizontal_tiles):
if vertical_tile == (vertical_tiles - 1) and horizontal_tile == (horizontal_tiles - 1):
dimensions.append([horizontal_tile * width_of_square,
vertical_tile * height_of_square,
width_of_last_square + (horizontal_tile * width_of_square),
height_of_last_square + (height_of_square * vertical_tile)])
elif vertical_tile == (vertical_tiles - 1):
dimensions.append([horizontal_tile * width_of_square,
vertical_tile * height_of_square,
width_of_square + (horizontal_tile * width_of_square),
height_of_last_square + (height_of_square * vertical_tile)])
elif horizontal_tile == (horizontal_tiles - 1):
dimensions.append([horizontal_tile * width_of_square,
vertical_tile * height_of_square,
width_of_last_square + (horizontal_tile * width_of_square),
height_of_square + (height_of_square * vertical_tile)])
else:
dimensions.append([horizontal_tile * width_of_square,
vertical_tile * height_of_square,
width_of_square + (horizontal_tile * width_of_square),
height_of_square + (height_of_square * vertical_tile)])
# For loop that generates polygons could be rewritten, but maybe harder to read?
# polygons = [x1,y1, x1,y2, x2,y2, x2,y1 for x1,y1, x2,y2 in dimensions]
# last_column = [(horizontal_tiles - 1) + horizontal_tiles * i for i in range(vertical_tiles)]
last_column = []
for i in range(vertical_tiles):
last_column.append((horizontal_tiles - 1) + horizontal_tiles * i)
last_row = range((horizontal_tiles * vertical_tiles) - horizontal_tiles, horizontal_tiles * vertical_tiles)
polygons = []
for x1, y1, x2, y2 in dimensions:
polygons.append([x1, y1, x1, y2, x2, y2, x2, y1])
polygon_indices = []
for i in range((vertical_tiles * horizontal_tiles) - 1):
if i not in last_row and i not in last_column:
polygon_indices.append([i, i + 1, i + horizontal_tiles, i + 1 + horizontal_tiles])
for a, b, c, d in polygon_indices:
dx = random.randint(-magnitude, magnitude)
dy = random.randint(-magnitude, magnitude)
x1, y1, x2, y2, x3, y3, x4, y4 = polygons[a]
polygons[a] = [x1, y1,
x2, y2,
x3 + dx, y3 + dy,
x4, y4]
x1, y1, x2, y2, x3, y3, x4, y4 = polygons[b]
polygons[b] = [x1, y1,
x2 + dx, y2 + dy,
x3, y3,
x4, y4]
x1, y1, x2, y2, x3, y3, x4, y4 = polygons[c]
polygons[c] = [x1, y1,
x2, y2,
x3, y3,
x4 + dx, y4 + dy]
x1, y1, x2, y2, x3, y3, x4, y4 = polygons[d]
polygons[d] = [x1 + dx, y1 + dy,
x2, y2,
x3, y3,
x4, y4]
generated_mesh = []
for i in range(len(dimensions)):
generated_mesh.append([dimensions[i], polygons[i]])
output = tmp.transform(tmp.size, PIL.Image.MESH, generated_mesh, resample=PIL.Image.BICUBIC)
if modify:
self.origin = np.asarray(output)
return output
def preprocessing(
image,
is_random=False,
binaryzation=-1,
median_blur=-1,
gaussian_blur=-1,
equalize_hist=False,
laplacian=False,
warp_perspective=False,
sp_noise=-1.0,
rotate=-1,
random_blank=-1,
random_transition=-1,
random_brightness=False,
random_gamma=False,
random_channel_swap=False,
random_saturation=False,
random_hue=False,
):
"""
各种预处理函数是否启用及参数配置
:param random_transition: bool, 随机位移
:param random_blank: bool, 随机填充空白
:param random_brightness: bool, 随机亮度
:param image: numpy图片数组,
:param binaryzation: list-int数字范围, 二值化
:param median_blur: int数字,
:param gaussian_blur: int数字,
:param equalize_hist: bool,
:param laplacian: bool, 拉普拉斯
:param warp_perspective: bool, 透视变形
:param sp_noise: 浮点, 椒盐噪声
:param rotate: 数字, 旋转
:param corp: 裁剪
:return:
"""
pretreatment = Pretreatment(image)
if rotate > 0 and (bool(random.getrandbits(1)) or not is_random):
pretreatment.rotate(rotate, True)
if random_transition != -1 and (bool(random.getrandbits(1)) or not is_random):
pretreatment.random_transition(5, True)
if 0 < sp_noise < 1 and (bool(random.getrandbits(1)) or not is_random):
pretreatment.sp_noise(sp_noise, True)
if binaryzation != -1 and (bool(random.getrandbits(1)) or not is_random):
pretreatment.binarization(binaryzation, True)
if median_blur != -1 and (bool(random.getrandbits(1)) or not is_random):
pretreatment.median_blur(median_blur, True)
if gaussian_blur != -1 and (bool(random.getrandbits(1)) or not is_random):
pretreatment.gaussian_blur(gaussian_blur, True)
if equalize_hist and (bool(random.getrandbits(1)) or not is_random):
pretreatment.equalize_hist(True, True)
if laplacian and (bool(random.getrandbits(1)) or not is_random):
pretreatment.laplacian(True, True)
if warp_perspective and (bool(random.getrandbits(1)) or not is_random):
pretreatment.warp_perspective(True)
if random_brightness and (bool(random.getrandbits(1)) or not is_random):
pretreatment.random_brightness(True)
if random_blank != -1 and (bool(random.getrandbits(1)) or not is_random):
pretreatment.random_blank(2, True)
if random_gamma and (bool(random.getrandbits(1)) or not is_random):
pretreatment.random_gamma(True)
if random_channel_swap and (bool(random.getrandbits(1)) or not is_random):
pretreatment.random_channel_swap(True)
if random_saturation and (bool(random.getrandbits(1)) or not is_random):
pretreatment.random_saturation(True)
if random_hue and (bool(random.getrandbits(1)) or not is_random):
pretreatment.random_hue(18, True)
return pretreatment.get()
def preprocessing_by_func(exec_map: dict, src_arr, key=None):
if not exec_map:
return src_arr
target_arr = cv2.cvtColor(src_arr, cv2.COLOR_RGB2BGR)
if not key:
key = random.choice(list(exec_map.keys()))
for sentence in exec_map.get(key):
if sentence.startswith("@@"):
target_arr = eval(sentence[2:])
elif sentence.startswith("$$"):
exec(sentence[2:])
return cv2.cvtColor(target_arr, cv2.COLOR_BGR2RGB)
if __name__ == '__main__':
import io
import os
import PIL.Image
import random
import hashlib
from tools.gif_frames import concat_frames
root_dir = r"H:\TrainSet\点选\顶象\定位"
target_dir = r"H:\TrainSet\点选\顶象\定位1"
if not os.path.exists(target_dir):
os.makedirs(target_dir)
# name = random.choice(os.listdir(root_dir))
# name = "3956_b8cee4da-3530-11ea-9778-c2f9192435fa.png"
for i, name in enumerate(os.listdir(root_dir)):
path = os.path.join(root_dir, name)
if name.count('_') > 1:
label = name.split("_")[0:-1]
label = "_".join(label)
else:
label = name.split("_")[0]
print(path)
with open(path, "rb") as f:
path_or_bytes = f.read()
path_or_stream = io.BytesIO(path_or_bytes)
try:
pil_image = PIL.Image.open(path_or_stream)
except:
continue
# im = concat_frames(pil_image, [16, 47])
im = np.array(pil_image)
# im = preprocessing_by_func(exec_map={
# "black": [
# "$$target_arr[:, :, 2] = 255 - target_arr[:, :, 2]",
# ],
# "red": [],
# "yellow": [
# "@@target_arr[:, :, (0, 0, 1)]",
# # "$$target_arr[:, :, 2] = 255 - target_arr[:, :, 2]",
# # "@@target_arr[:, :, (0, 2, 0)]",
# # "$$target_arr[:, :, 2] = 255 - target_arr[:, :, 2]",
#
# # "$$target_arr[:, :, 2] = 255 - target_arr[:, :, 2]",
# # "@@target_arr[:, :, (0, 2, 1)]",
#
# # "$$target_arr[:, :, 1] = 255 - target_arr[:, :, 1]",
# # "@@target_arr[:, :, (2, 1, 0)]",
# # "@@target_arr[:, :, (1, 2, 0)]",
# ],
# "blue": [
# "@@target_arr[:, :, (1, 2, 0)]",
# ]
# },
# src_arr=im,
# key="blue"
# )
im = preprocessing(
image=im,
is_random=False,
gaussian_blur=5,
# binaryzation=220,
# equalize_hist=True,
random_brightness=True,
random_gamma=True,
# random_channel_swap=True,
# random_hue=True,
# laplacian=True
# binaryzation=random.randint(70, 120),
# warp_perspective=True,
# random_transition=True,
# rotate=100,
# random_blank=True
).astype(np.float32)
# im = im.swapaxes(0, 1)
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)
cv_img = cv2.imencode('.png', im)[1]
img_bytes = bytes(bytearray(cv_img))
tag = hashlib.md5(img_bytes).hexdigest()
new_name = "{}_{}.png".format(label, tag)
with open(os.path.join(target_dir, new_name), "wb") as f:
f.write(img_bytes)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/chong_lou/captcha_trainer.git
[email protected]:chong_lou/captcha_trainer.git
chong_lou
captcha_trainer
captcha_trainer
master

搜索帮助