代码拉取完成,页面将自动刷新
同步操作将从 kerlomz/captcha_platform 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
# Author: kerlomz <[email protected]>
import os
import sys
import uuid
import json
import yaml
import hashlib
import logging
import logging.handlers
from category import *
from constants import SystemConfig, ModelField, ModelScene
MODEL_SCENE_MAP = {
'Classification': ModelScene.Classification
}
MODEL_FIELD_MAP = {
'Image': ModelField.Image,
'Text': ModelField.Text
}
BLACKLIST_PATH = "blacklist.json"
WHITELIST_PATH = "whitelist.json"
def resource_path(relative_path):
try:
# PyInstaller creates a temp folder and stores path in _MEIPASS
base_path = sys._MEIPASS
except AttributeError:
base_path = os.path.abspath(".")
return os.path.join(base_path, relative_path)
def get_version():
version_file_path = resource_path("VERSION")
if not os.path.exists(version_file_path):
return "NULL"
with open(version_file_path, "r", encoding="utf8") as f:
return "".join(f.readlines()).strip()
def get_default(src, default):
return src if src else default
def get_dict_fill(src: dict, default: dict):
if not src:
return default
new_dict = default
new_dict.update(src)
return new_dict
def blacklist() -> list:
if not os.path.exists(BLACKLIST_PATH):
return []
try:
with open(BLACKLIST_PATH, "r", encoding="utf8") as f_blacklist:
result = json.loads("".join(f_blacklist.readlines()))
return result
except Exception as e:
print(e)
return []
def whitelist() -> list:
if not os.path.exists(WHITELIST_PATH):
return ["127.0.0.1", "localhost"]
try:
with open(WHITELIST_PATH, "r", encoding="utf8") as f_whitelist:
result = json.loads("".join(f_whitelist.readlines()))
return result
except Exception as e:
print(e)
return ["127.0.0.1", "localhost"]
def set_blacklist(ip):
try:
old_blacklist = blacklist()
old_blacklist.append(ip)
with open(BLACKLIST_PATH, "w+", encoding="utf8") as f_blacklist:
f_blacklist.write(json.dumps(old_blacklist, ensure_ascii=False, indent=2))
except Exception as e:
print(e)
class Config(object):
def __init__(self, conf_path: str, graph_path: str = None, model_path: str = None):
self.model_path = model_path
self.conf_path = conf_path
self.graph_path = graph_path
self.sys_cf = self.read_conf
self.access_key = None
self.secret_key = None
self.default_model = self.sys_cf['System']['DefaultModel']
self.default_port = self.sys_cf['System'].get('DefaultPort')
if not self.default_port:
self.default_port = 19952
self.split_flag = self.sys_cf['System']['SplitFlag']
self.split_flag = self.split_flag if isinstance(self.split_flag, bytes) else SystemConfig.split_flag
self.route_map = get_default(self.sys_cf.get('RouteMap'), SystemConfig.default_route)
self.log_path = "logs"
self.request_def_map = get_default(self.sys_cf.get('RequestDef'), SystemConfig.default_config['RequestDef'])
self.response_def_map = get_default(self.sys_cf.get('ResponseDef'), SystemConfig.default_config['ResponseDef'])
self.save_path = self.sys_cf['System'].get("SavePath")
self.request_count_interval = get_default(
src=self.sys_cf['System'].get("RequestCountInterval"),
default=60 * 60 * 24
)
self.g_request_count_interval = get_default(
src=self.sys_cf['System'].get("GlobalRequestCountInterval"),
default=60 * 60 * 24
)
self.request_limit = get_default(self.sys_cf['System'].get("RequestLimit"), -1)
self.global_request_limit = get_default(self.sys_cf['System'].get("GlobalRequestLimit"), -1)
self.exceeded_msg = get_default(
src=self.sys_cf['System'].get("ExceededMessage"),
default=SystemConfig.default_config['System'].get('ExceededMessage')
)
self.illegal_time_msg = get_default(
src=self.sys_cf['System'].get("IllegalTimeMessage"),
default=SystemConfig.default_config['System'].get('IllegalTimeMessage')
)
self.request_size_limit: dict = get_default(
src=self.sys_cf['System'].get('RequestSizeLimit'),
default={}
)
self.blacklist_trigger_times = get_default(self.sys_cf['System'].get("BlacklistTriggerTimes"), -1)
self.use_whitelist: dict = get_default(
src=self.sys_cf['System'].get('Whitelist'),
default=False
)
self.error_message = get_dict_fill(
self.sys_cf['System'].get('ErrorMessage'), SystemConfig.default_config['System']['ErrorMessage']
)
self.logger_tag = get_default(self.sys_cf['System'].get('LoggerTag'), "coriander")
self.without_logger = self.sys_cf['System'].get('WithoutLogger')
self.without_logger = self.without_logger if self.without_logger is not None else False
self.logger = logging.getLogger(self.logger_tag)
self.use_default_authorization = False
self.authorization = None
self.init_logger()
self.assignment()
def init_logger(self):
self.logger.setLevel(logging.INFO)
if not os.path.exists(self.model_path):
os.makedirs(self.model_path)
if not os.path.exists(self.graph_path):
os.makedirs(self.graph_path)
self.logger.propagate = False
if not self.without_logger:
if not os.path.exists(self.log_path):
os.makedirs(self.log_path)
file_handler = logging.handlers.TimedRotatingFileHandler(
'{}/{}.log'.format(self.log_path, "captcha_platform"),
when="MIDNIGHT",
interval=1,
backupCount=180,
encoding='utf-8'
)
stream_handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
stream_handler.setFormatter(formatter)
self.logger.addHandler(file_handler)
self.logger.addHandler(stream_handler)
def assignment(self):
# ---AUTHORIZATION START---
mac_address = hex(uuid.getnode())[2:]
self.use_default_authorization = False
self.authorization = self.sys_cf.get('Security')
if not self.authorization or not self.authorization.get('AccessKey') or not self.authorization.get('SecretKey'):
self.use_default_authorization = True
model_name_md5 = hashlib.md5(
"{}".format(self.default_model).encode('utf8')).hexdigest()
self.authorization = {
'AccessKey': model_name_md5[0: 16],
'SecretKey': hashlib.md5("{}{}".format(model_name_md5, mac_address).encode('utf8')).hexdigest()
}
self.access_key = self.authorization['AccessKey']
self.secret_key = self.authorization['SecretKey']
# ---AUTHORIZATION END---
@property
def read_conf(self):
if not os.path.exists(self.conf_path):
with open(self.conf_path, 'w', encoding="utf-8") as sys_fp:
sys_fp.write(yaml.safe_dump(SystemConfig.default_config))
return SystemConfig.default_config
with open(self.conf_path, 'r', encoding="utf-8") as sys_fp:
sys_stream = sys_fp.read()
return yaml.load(sys_stream, Loader=yaml.SafeLoader)
class Model(object):
def __init__(self, conf: Config, model_conf_path: str):
self.conf = conf
self.logger = self.conf.logger
self.graph_path = conf.graph_path
self.model_path = conf.model_path
self.model_conf_path = model_conf_path
self.model_conf_demo = 'model_demo.yaml'
self.verify()
def verify(self):
if not os.path.exists(self.model_conf_path):
raise Exception(
'Configuration File "{}" No Found. '
'If it is used for the first time, please copy one from {} as {}'.format(
self.model_conf_path,
self.model_conf_demo,
self.model_path
)
)
if not os.path.exists(self.model_path):
os.makedirs(self.model_path)
raise Exception(
'For the first time, please put the trained model in the model directory.'
)
def category_extract(self, param):
if isinstance(param, list):
return param
if isinstance(param, str):
if param in SIMPLE_CATEGORY_MODEL.keys():
return SIMPLE_CATEGORY_MODEL.get(param)
self.logger.error(
"Category set configuration error, customized category set should be list type"
)
return None
@property
def model_conf(self) -> dict:
with open(self.model_conf_path, 'r', encoding="utf-8") as sys_fp:
sys_stream = sys_fp.read()
return yaml.load(sys_stream, Loader=yaml.SafeLoader)
class ModelConfig(Model):
model_exists: bool = False
def __init__(self, conf: Config, model_conf_path: str):
super().__init__(conf=conf, model_conf_path=model_conf_path)
self.conf = conf
"""MODEL"""
self.model_root: dict = self.model_conf['Model']
self.model_name: str = self.model_root.get('ModelName')
self.model_version: float = self.model_root.get('Version')
self.model_version = self.model_version if self.model_version else 1.0
self.model_field_param: str = self.model_root.get('ModelField')
self.model_field: ModelField = ModelConfig.param_convert(
source=self.model_field_param,
param_map=MODEL_FIELD_MAP,
text="Current model field ({model_field}) is not supported".format(model_field=self.model_field_param),
code=50002
)
self.model_scene_param: str = self.model_root.get('ModelScene')
self.model_scene: ModelScene = ModelConfig.param_convert(
source=self.model_scene_param,
param_map=MODEL_SCENE_MAP,
text="Current model scene ({model_scene}) is not supported".format(model_scene=self.model_scene_param),
code=50001
)
"""SYSTEM"""
self.checkpoint_tag = 'checkpoint'
self.system_root: dict = self.model_conf['System']
self.memory_usage: float = self.system_root.get('MemoryUsage')
"""FIELD PARAM - IMAGE"""
self.field_root: dict = self.model_conf['FieldParam']
self.category_param = self.field_root.get('Category')
self.category_value = self.category_extract(self.category_param)
if self.category_value is None:
raise Exception(
"The category set type does not exist, there is no category set named {}".format(self.category_param),
)
self.category: list = SPACE_TOKEN + self.category_value
self.category_num: int = len(self.category)
self.image_channel: int = self.field_root.get('ImageChannel')
self.image_width: int = self.field_root.get('ImageWidth')
self.image_height: int = self.field_root.get('ImageHeight')
self.max_label_num: int = self.field_root.get('MaxLabelNum')
self.min_label_num: int = self.get_var(self.field_root, 'MinLabelNum', self.max_label_num)
self.resize: list = self.field_root.get('Resize')
self.output_split = self.field_root.get('OutputSplit')
self.output_split = self.output_split if self.output_split else ""
self.corp_params = self.field_root.get('CorpParams')
self.output_coord = self.field_root.get('OutputCoord')
self.batch_model = self.field_root.get('BatchModel')
self.external_model = self.field_root.get('ExternalModelForCorp')
self.category_split = self.field_root.get('CategorySplit')
"""PRETREATMENT"""
self.pretreatment_root = self.model_conf.get('Pretreatment')
self.pre_binaryzation = self.get_var(self.pretreatment_root, 'Binaryzation', -1)
self.pre_replace_transparent = self.get_var(self.pretreatment_root, 'ReplaceTransparent', True)
self.pre_horizontal_stitching = self.get_var(self.pretreatment_root, 'HorizontalStitching', False)
self.pre_concat_frames = self.get_var(self.pretreatment_root, 'ConcatFrames', -1)
self.pre_blend_frames = self.get_var(self.pretreatment_root, 'BlendFrames', -1)
self.pre_freq_frames = self.get_var(self.pretreatment_root, 'FreqFrames', -1)
self.exec_map = self.get_var(self.pretreatment_root, 'ExecuteMap', None)
"""COMPILE_MODEL"""
self.compile_model_path = os.path.join(self.graph_path, '{}.pb'.format(self.model_name))
if not os.path.exists(self.compile_model_path):
if not os.path.exists(self.graph_path):
os.makedirs(self.graph_path)
self.logger.error(
'{} not found, please put the trained model in the graph directory.'.format(self.compile_model_path)
)
else:
self.model_exists = True
@staticmethod
def param_convert(source, param_map: dict, text, code, default=None):
if source is None:
return default
if source not in param_map.keys():
raise Exception(text)
return param_map[source]
def size_match(self, size_str):
return size_str == self.size_string
@staticmethod
def get_var(src: dict, name: str, default=None):
if not src or name not in src:
return default
return src.get(name)
@property
def size_string(self):
return "{}x{}".format(self.image_width, self.image_height)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。