代码拉取完成,页面将自动刷新
// RKF45
/*
------------------------------------------------------
作者 : Black Ghost
日期 : 2018-12-19
版本 : 0.0.0
------------------------------------------------------
四级五阶变步长Runge-Kutta法求解常微分方程组
理论:
参考 John H. Mathews and Kurtis D. Fink. Numerical
methods using MATLAB, 4th ed. Pearson
Education, 2004. ss 9.5.4.
------------------------------------------------------
输入 :
fun 第i个方程(计算变量值向量, i)
x0 初值向量,(fn+1)x1,一个x,fn个因变量
xend 终止x
tol 步长控制误差
fn 方程个数
n 最大迭代步数
输出 :
sol 解向量
err 解出标志:false-未解出或达到步数上限;
true-全部解出
------------------------------------------------------
*/
package goNum
import (
"math"
)
// RKF45 四级五阶变步长Runge-Kutta法求解常微分方程组
func RKF45(fun func(Matrix, int) float64, x0 Matrix,
xend, tol float64, fn, n int) (Matrix, bool) {
/*
四级五阶变步长Runge-Kutta法求解常微分方程组
输入 :
fun 第i个方程(计算变量值向量, i)
x0 初值向量,(fn+1)x1,一个x,fn个因变量
xend 终止x
tol 步长控制误差
fn 方程个数
n 最大迭代步数
输出 :
sol 解向量
err 解出标志:false-未解出或达到步数上限;
true-全部解出
*/
//判断方程个数是否对应初值个数
if x0.Rows != fn+1 {
panic("Error in goNum.RKF45: Quantities of x0 and fn+1 are not equal")
}
//判断tol值
if tol <= 0.0 {
panic("Error in goNum.RKF45: tol less than or euqals to zero")
}
//判断xend值
if xend <= x0.Data[0] {
panic("Error in goNum.RKF45: xend less than or euqals to x0")
}
sol0 := ZeroMatrix(fn+1, n+1)
var err bool = false
h := 100.0 * (xend - x0.Data[0]) / float64(n) //初始步长,100倍最小步长,可修改
//把初值赋给sol
for i := 0; i < fn+1; i++ {
sol0.SetMatrix(i, 0, x0.Data[i])
}
//nreal解矩阵实际长度
var i, nreal int = 1, 1
for sol0.GetFromMatrix(0, i-1) < xend { //最大迭代次数控制
temp0 := ZeroMatrix(fn+1, 1)
//给temp0赋i-1步值,每一步开始
for j := 0; j < fn+1; j++ {
temp0.Data[j] = sol0.GetFromMatrix(j, i-1)
}
k1 := ZeroMatrix(fn, 1)
k2 := ZeroMatrix(fn, 1)
k3 := ZeroMatrix(fn, 1)
k4 := ZeroMatrix(fn, 1)
k5 := ZeroMatrix(fn, 1)
k6 := ZeroMatrix(fn, 1)
//1. k1
for j := 0; j < fn; j++ { //微分方程迭代
k1.Data[j] = h * fun(temp0, j)
}
//2. k2
temp0.Data[0] = sol0.GetFromMatrix(0, i-1) + h/4.0 //xn+h/4
for j := 1; j < fn+1; j++ { //yn+k1/4
temp0.Data[j] = sol0.GetFromMatrix(j, i-1) + k1.Data[j-1]/4.0
}
for j := 0; j < fn; j++ { //微分方程迭代
k2.Data[j] = h * fun(temp0, j)
}
//3. k3
temp0.Data[0] = sol0.GetFromMatrix(0, i-1) + 3.0*h/8.0 //xn+3h/8
for j := 1; j < fn+1; j++ { //yn+3k1/32+9k2/32
temp0.Data[j] = sol0.GetFromMatrix(j, i-1) + 3.0*k1.Data[j-1]/32.0 +
9.0*k2.Data[j-1]/32.0
}
for j := 0; j < fn; j++ { //微分方程迭代
k3.Data[j] = h * fun(temp0, j)
}
//4. k4
temp0.Data[0] = sol0.GetFromMatrix(0, i-1) + 12.0*h/13.0 //xn+12h/13
for j := 1; j < fn+1; j++ { //yn+1932k1/2197-7200k2/2197+7296k3/2197
temp0.Data[j] = sol0.GetFromMatrix(j, i-1) + 1932.0*k1.Data[j-1]/2197.0 -
7200.0*k2.Data[j-1]/2197.0 + 7296.0*k3.Data[j-1]/2197.0
}
for j := 0; j < fn; j++ { //微分方程迭代
k4.Data[j] = h * fun(temp0, j)
}
//5. k5
temp0.Data[0] = sol0.GetFromMatrix(0, i-1) + h //xn+h
for j := 1; j < fn+1; j++ { //yn+439k1/216-8k2+3680k3/513-845k4/4104
temp0.Data[j] = sol0.GetFromMatrix(j, i-1) + 439.0*k1.Data[j-1]/216.0 -
8.0*k2.Data[j-1] + 3680.0*k3.Data[j-1]/513.0 - 845.0*k4.Data[j-1]/4104.0
}
for j := 0; j < fn; j++ { //微分方程迭代
k5.Data[j] = h * fun(temp0, j)
}
//6. k6
temp0.Data[0] = sol0.GetFromMatrix(0, i-1) + h/2.0 //xn+h/2
for j := 1; j < fn+1; j++ { //yn-8k1/27+2k2-3544k3/2565+1859k4/4104-11k5/40
temp0.Data[j] = sol0.GetFromMatrix(j, i-1) - 8.0*k1.Data[j-1]/27.0 +
2.0*k2.Data[j-1] - 3544.0*k3.Data[j-1]/2565.0 + 1859.0*k4.Data[j-1]/4104.0 -
11.0*k5.Data[j-1]/40.0
}
for j := 0; j < fn; j++ { //微分方程迭代
k6.Data[j] = h * fun(temp0, j)
}
//误差与步长
errtemp := ZeroMatrix(fn, 1) //=ABS(z_(k+1)-y_(k+1))
for j := 1; j < fn+1; j++ {
errtemp.Data[j-1] = k1.Data[j-1]/360.0 - 128.0*k3.Data[j-1]/4275.0 -
2197.0*k4.Data[j-1]/75240.0 + k5.Data[j-1]/50.0 + 2.0*k6.Data[j-1]/55.0
}
errtemp0, _, _ := MaxAbs(errtemp.Data)
//正常推进
if math.Abs(errtemp0) < tol {
//i步值
sol0.SetMatrix(0, i, sol0.GetFromMatrix(0, i-1)+h) //xi
for j := 1; j < fn+1; j++ {
soltemp1 := 25.0*k1.Data[j-1]/216.0 + 1408.0*k3.Data[j-1]/2565.0 +
2197.0*k4.Data[j-1]/4104.0 - k5.Data[j-1]/5.0
soltemp1 = sol0.GetFromMatrix(j, i-1) + soltemp1
sol0.SetMatrix(j, i, soltemp1)
}
i++
nreal = i
continue
}
//最大步数强边界
if i >= n {
break
}
//变步长
scale := tol * h / (2.0 * math.Abs(errtemp0))
scale = math.Pow(scale, 0.25)
if scale < 0.75 {
h = h / 2.0
} else if scale > 1.5 {
h = h * 2.0
}
}
//解矩阵缩减
sol := ZeroMatrix(fn+1, nreal)
for j := 0; j < nreal; j++ {
for k := 0; k < fn+1; k++ {
sol.SetMatrix(k, j, sol0.GetFromMatrix(k, j))
}
}
err = true
return sol, err
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。