1 Star 0 Fork 113

开源项目引用/facenet_face_recognition

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
face_recognition_api.py 9.99 KB
一键复制 编辑 原始数据 按行查看 历史
爿臣戈王耑 提交于 2017-11-21 14:55 . update
# -*- coding:utf-8 -*-
from flask import Flask, jsonify, abort, make_response, request, url_for
from flask_httpauth import HTTPBasicAuth
import json
import os
import ntpath
import argparse
import face_mysql
import tensorflow as tf
import src.facenet
import src.align.detect_face
import numpy as np
from scipy import misc
import matrix_fun
import urllib
app = Flask(__name__)
# 图片最大为16M
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
auth = HTTPBasicAuth()
#设置最大的相似距离,1.22是facenet基于lfw计算得到的
MAX_DISTINCT=1.22
# 设置上传的图片路径和格式
from werkzeug import secure_filename
#设置post请求中获取的图片保存的路径
UPLOAD_FOLDER = './pic_tmp/'
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
else:
pass
ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg'])
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
with tf.Graph().as_default():
gpu_memory_fraction = 1.0
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = src.align.detect_face.create_mtcnn(sess, None)
#训练模型的路径
modelpath = "./models/facenet/20170512-110547"
with tf.Graph().as_default():
sess = tf.Session()
# src.facenet.load_model(modelpath)
# 加载模型
meta_file, ckpt_file = src.facenet.get_model_filenames(modelpath)
saver = tf.train.import_meta_graph(os.path.join(modelpath, meta_file))
saver.restore(sess, os.path.join(modelpath, ckpt_file))
# Get input and output tensors
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
# 进行人脸识别,加载
print('Creating networks and loading parameters')
#获取post中的图片并执行插入到库 返回数据库中保存的id
@app.route('/face/insert', methods=['POST'])
def face_insert():
#分别获取post请求中的uid 和ugroup作为图片信息
uid = request.form['uid']
ugroup = request.form['ugroup']
upload_files = request.files['imagefile']
#从post请求图片保存到本地路径中
file = upload_files
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
image_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
print(image_path)
#opencv读取图片,开始进行人脸识别
img = misc.imread(os.path.expanduser(image_path), mode='RGB')
# 设置默认插入时 detect_multiple_faces =Flase只检测图中的一张人脸,True则检测人脸中的多张
#一般入库时只检测一张人脸,查询时检测多张人脸
images = image_array_align_data(img, image_path, pnet, rnet, onet, detect_multiple_faces=False)
feed_dict = {images_placeholder: images, phase_train_placeholder: False}
#emb_array保存的是经过facenet转换的128维的向量
emb_array = sess.run(embeddings, feed_dict=feed_dict)
filename_base, file_extension = os.path.splitext(image_path)
id_list = []
#存入数据库
for j in range(0, len(emb_array)):
face_mysql_instant = face_mysql.face_mysql()
last_id = face_mysql_instant.insert_facejson(filename_base + "_" + str(j),
",".join(str(li) for li in emb_array[j].tolist()), uid, ugroup)
id_list.append(str(last_id))
#设置返回类型
request_result = {}
request_result['id'] = ",".join(id_list)
if len(id_list) > 0:
request_result['state'] = 'sucess'
else:
request_result['state'] = 'error'
print(request_result)
return json.dumps(request_result)
@app.route('/face/query', methods=['POST'])
def face_query():
#获取查询条件 在ugroup中查找相似的人脸
ugroup = request.form['ugroup']
upload_files = request.files['imagefile']
#获取post请求的图片到本地
file = upload_files
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
image_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
print(image_path)
#读取本地的图片
img = misc.imread(os.path.expanduser(image_path), mode='RGB')
images = image_array_align_data(img, image_path, pnet, rnet, onet)
#判断如果如图没有检测到人脸则直接返回
if len(images.shape) < 4: return json.dumps({'error': "not found face"})
feed_dict = {images_placeholder: images, phase_train_placeholder: False}
emb_array = sess.run(embeddings, feed_dict=feed_dict)
face_query = matrix_fun.matrix()
#分别获取距离该图片中人脸最相近的人脸信息
# pic_min_scores 是数据库中人脸距离(facenet计算人脸相似度根据人脸距离进行的)
# pic_min_names 是当时入库时保存的文件名
# pic_min_uid 是对应的用户id
pic_min_scores, pic_min_names, pic_min_uid = face_query.get_socres(emb_array, ugroup)
#如果提交的query没有group 则返回
if len(pic_min_scores) == 0: return json.dumps({'error': "not found user group"})
#设置返回结果
result = []
for i in range(0, len(pic_min_scores)):
if pic_min_scores[i]<MAX_DISTINCT:
rdict = {'uid': pic_min_uid[i],
'distance': pic_min_scores[i],
'pic_name': pic_min_names[i] }
result.append(rdict)
print(result)
if len(result)==0 :
return json.dumps({"state":"success, but not match face"})
else:
return json.dumps(result)
#检测图片中的人脸 image_arr是opencv读取图片后的3维矩阵 返回图片中人脸的位置信息
def image_array_align_data(image_arr, image_path, pnet, rnet, onet, image_size=160, margin=32, gpu_memory_fraction=1.0,
detect_multiple_faces=True):
minsize = 20 # minimum size of face
threshold = [0.6, 0.7, 0.7] # three steps's threshold
factor = 0.709 # scale factor
img = image_arr
bounding_boxes, _ = src.align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
nrof_faces = bounding_boxes.shape[0]
nrof_successfully_aligned = 0
if nrof_faces > 0:
det = bounding_boxes[:, 0:4]
det_arr = []
img_size = np.asarray(img.shape)[0:2]
if nrof_faces > 1:
if detect_multiple_faces:
for i in range(nrof_faces):
det_arr.append(np.squeeze(det[i]))
else:
bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
img_center = img_size / 2
offsets = np.vstack(
[(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]])
offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
index = np.argmax(
bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering
det_arr.append(det[index, :])
else:
det_arr.append(np.squeeze(det))
images = np.zeros((len(det_arr), image_size, image_size, 3))
for i, det in enumerate(det_arr):
det = np.squeeze(det)
bb = np.zeros(4, dtype=np.int32)
bb[0] = np.maximum(det[0] - margin / 2, 0)
bb[1] = np.maximum(det[1] - margin / 2, 0)
bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
# 进行图片缩放 cv2.resize(img,(w,h))
scaled = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
nrof_successfully_aligned += 1
# 保存检测的头像
filename_base = './pic_tmp'
filename = os.path.basename(image_path)
filename_name, file_extension = os.path.splitext(filename)
#多个人脸时,在picname后加_0 _1 _2 依次累加。
output_filename_n = "{}/{}_{}{}".format(filename_base, filename_name, i, file_extension)
misc.imsave(output_filename_n, scaled)
scaled = src.facenet.prewhiten(scaled)
scaled = src.facenet.crop(scaled, False, 160)
scaled = src.facenet.flip(scaled, False)
images[i] = scaled
if nrof_faces > 0:
return images
else:
# 如果没有检测到人脸 直接返回一个1*3的0矩阵 多少维度都行 只要能和是不是一个图片辨别出来就行
return np.zeros((1, 3))
# 备用 通过urllib的方式从远程地址获取一个图片到本地
# 利用该方法可以提交一个图片的url地址,则也是先保存到本地再进行后续处理
def get_url_imgae(picurl):
response = urllib.urlopen(picurl)
pic = response.read()
pic_name = "./pic_tmp/" + os.path.basename(picurl)
with open(pic_name, 'wb') as f:
f.write(pic)
return pic_name
@auth.get_password
def get_password(username):
if username == 'face':
return 'face'
return None
@auth.error_handler
def unauthorized():
return make_response(jsonify({'error': 'Unauthorized access'}), 401)
@app.errorhandler(400)
def not_found(error):
return make_response(jsonify({'error': 'Invalid data!'}), 400)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8088)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/chenxiaomo_open/facenet_face_regonistant.git
[email protected]:chenxiaomo_open/facenet_face_regonistant.git
chenxiaomo_open
facenet_face_regonistant
facenet_face_recognition
master

搜索帮助