6 Star 29 Fork 4

andy-upp/tensor-calcu-lib

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
easynn_golden.py 8.29 KB
一键复制 编辑 原始数据 按行查看 历史
liguanghui 提交于 2020-10-18 07:28 . 完善文档与注释
import numpy as np
import matplotlib.pyplot as plot
#张量的13种操作
'''
param expr: call_tensor.Expr 类的对象
param op: call_tensor.Expr.OP 类的对象
param args: 经过 Input或Input2d处理后,数据被放到args中进行计算
param **kwargs: Input或Input2d 操作将操作数变量以字典形式传入
'''
#接收数据输入并进行处理
def Input(expr, op, args, **kwargs):
if op.name in kwargs:
c = kwargs[op.name]
if isinstance(c, (int, float)):
return float(c)
elif hasattr(c, "shape"):
return c.astype(float)
else:
raise Exception("%s: Input must be float or int or ndarray: %s" % (expr, c))
else:
raise Exception("%s: missing input" % expr)
def Input2d(expr, op, args, **kwargs):
if not op.name in kwargs:
raise Exception("%s: missing input" % expr)
imgs = kwargs[op.name]
if not hasattr(imgs, "shape"):
raise Exception("%s: Input must be ndarray: %s" % (expr, imgs))
if any([
len(imgs.shape) != 4,
imgs.shape[1] != op.parameters["height"],
imgs.shape[2] != op.parameters["width"],
imgs.shape[3] != op.parameters["in_channels"]]):
raise Exception("%s: Invalid input size: %s" % (expr, imgs.shape))
# NHWC => NCHW
a = imgs.astype(float).transpose(0,3,1,2)
return imgs.astype(float).transpose(0,3,1,2)
def Const(expr, op, args, **kwargs):
return op.parameters["value"]
def Neg(expr, op, args, **kwargs):
return -args[0]
#tensor张量的Add计算
def Add(expr, op, args, **kwargs):
a = args[0]
b = args[1]
if not hasattr(a, "shape") and not hasattr(b, "shape"):
return a+b
elif hasattr(a, "shape") and hasattr(b, "shape"):
if a.shape != b.shape:
raise Exception("%s: size mismatch: %s+%s" % (expr, a.shape, b.shape))
return a+b
else:
raise Exception("%s: cannot mix scalar and ndarray" % expr)
#tensor张量的减法计算
def Sub(expr, op, args, **kwargs):
a = args[0]
b = args[1]
if not hasattr(a, "shape") and not hasattr(b, "shape"):
return a-b
elif hasattr(a, "shape") and hasattr(b, "shape"):
if a.shape != b.shape:
raise Exception("%s: size mismatch: %s-%s" % (expr, a.shape, b.shape))
return a-b
else:
raise Exception("%s: cannot mix scalar and ndarray" % expr)
#tensor张量的乘法计算
def Mul(expr, op, args, **kwargs):
a = args[0]
b = args[1]
if not hasattr(a, "shape") or not hasattr(b, "shape"):
return a*b
else:
if len(a.shape) != 2 or len(b.shape) != 2:
raise Exception("%s: matmul only: %s*%s" % (expr, a.shape, b.shape))
if a.shape[1] != b.shape[0]:
raise Exception("%s: size mismatch: %s*%s" % (expr, a.shape, b.shape))
return np.matmul(a, b)
#拉平
def Flatten(expr, op, args, **kwargs):
x = args[0]
if not hasattr(x, "shape"):
raise Exception("%s: ndarray only: %s" % (expr, imgs))
a = x.reshape((x.shape[0], -1))
return x.reshape((x.shape[0], -1))
#ReLU
def ReLU(expr, op, args, **kwargs):
x = args[0]
return x*(x > 0)
#线性操作
def Linear(expr, op, args, **kwargs):
x = args[0]
if not hasattr(x, "shape"):
raise Exception("%s: ndarray only: %s" % (expr, x))
if "weight" not in op.parameters or "bias" not in op.parameters:
raise Exception("%s: missing weight or bias" % expr)
weight = op.parameters["weight"]
bias = op.parameters["bias"]
if not hasattr(weight, "shape") or not hasattr(bias, "shape"):
raise Exception("%s: ndarray only for weight or bias" % expr)
in_features = op.parameters["in_features"]
out_features = op.parameters["out_features"]
if any([
len(x.shape) != 2,
x.shape[1] != in_features,
weight.shape != (out_features, in_features),
bias.shape != (out_features,)]):
raise Exception("%s: size mismatch: %s*%s+%s" % (expr, weight.shape, x.shape, bias.shape))
a = np.einsum("ni,oi->no", x, weight)+bias.reshape((1, out_features))
return np.einsum("ni,oi->no", x, weight)+bias.reshape((1, out_features))
#二维最大池化
def MaxPool2d(expr, op, args, **kwargs):
x = args[0]
if not hasattr(x, "shape"):
raise Exception("%s: ndarray only: %s" % (expr, x))
kernel_size = op.parameters["kernel_size"]
stride = op.parameters["stride"]
if kernel_size != stride:
raise Exception("%s: kernel_size != stride" % expr)
if any([
len(x.shape) != 4,
x.shape[2]%stride != 0,
x.shape[3]%stride != 0]):
raise Exception("%s: size mismatch: %s" % (expr, x.shape))
new_shape = (x.shape[0], x.shape[1], x.shape[2]//stride, stride, x.shape[3]//stride, stride)
a = np.nanmax(x.reshape(new_shape), axis = (3,5))
return np.nanmax(x.reshape(new_shape), axis = (3,5))
def Conv2d(expr, op, args, **kwargs):
x = args[0]
if not hasattr(x, "shape"):
raise Exception("%s: ndarray only: %s" % (expr, x))
if "weight" not in op.parameters or "bias" not in op.parameters:
raise Exception("%s: missing weight or bias" % expr)
weight = op.parameters["weight"]
bias = op.parameters["bias"]
in_channels = op.parameters["in_channels"]
out_channels = op.parameters["out_channels"]
kernel_size = op.parameters["kernel_size"]
padding = op.parameters["padding"]
if any([
len(x.shape) != 4,
x.shape[1] != in_channels,
weight.shape != (out_channels, in_channels, kernel_size, kernel_size),
bias.shape != (out_channels,)]):
raise Exception("%s: size mismatch: %s" % (expr, x.shape))
if padding != 0:
tmp = np.zeros((x.shape[0], x.shape[1], x.shape[2]+2*padding, x.shape[3]+2*padding))
tmp[:, :, 1:-2, 1:-2] = x
x = tmp
conv_shape = x.shape[:2]+(x.shape[2]+1-kernel_size, x.shape[3]+1-kernel_size, kernel_size, kernel_size)
conv_strides = x.strides+x.strides[2:]
conv = np.lib.stride_tricks.as_strided(x, shape = conv_shape, strides = conv_strides, writeable = False)
a = bias.reshape((1, out_channels, 1, 1))
b = np.einsum("nihwyx,oiyx->nohw", conv, weight)
c = np.einsum("nihwyx,oiyx->nohw", conv, weight)+bias.reshape((1, out_channels, 1, 1))
return np.einsum("nihwyx,oiyx->nohw", conv, weight)+bias.reshape((1, out_channels, 1, 1))
def Show(expr, op, args, **kwargs):
x = args[0]
if not hasattr(x, "shape") or len(x.shape) != 4:
raise Exception("%s: 4D ndarray only: %s" % (expr, x))
rows = x.shape[0]
if rows > 8:
rows = 8
fig, axes = plot.subplots(rows, x.shape[1])
fig.set_size_inches(16, 1.5*rows)
for i, axe in enumerate(axes.flat):
axe.set_xticks([])
axe.set_yticks([])
row = i//x.shape[1]
c = i%x.shape[1]
image = x[row, c, :, :]
axe.imshow(image)
axe.set_title("%d/%d" % (row, c))
return x
#调用张量操作的类
#调用张量操作,计算结果
class Evalulation:
#program是一个存储call_tensor.Expr类对象的list
def __init__(self,program):
self.program = program
#**kwargs可以接收多个字典形式的参数,此处调用tensor基本运算进行计算
def __call__(self,**kwargs):
values = {}
#遍历program中的表达式,如果是input则放到value中,如果是操作符则从value中取值
#进行计算,并把结果存回value
for expr in self.program:
args = [values[ex.id] for ex in expr.inputs]
#判断expr中的 tensor计算类型是否被实现了
if expr.op.op_type not in globals():
raise Exception("%s: not implemented" % expr)
#调用tensor 基本计算
values[expr.id] = globals()[expr.op.op_type](expr, expr.op, args, **kwargs)
return values[self.program[-1].id]
#收集计算表达式 call_tensor.Expr,追加到program
class Builder:
def __init__(self):
self.program = []
def append(self, expr):
self.program.append(expr)
def build(self):
return Evalulation(self.program)
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C++
1
https://gitee.com/andy-upp/tensor-calcu-lib.git
[email protected]:andy-upp/tensor-calcu-lib.git
andy-upp
tensor-calcu-lib
tensor-calcu-lib
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385