代码拉取完成,页面将自动刷新
同步操作将从 Gitee 极速下载/EmotiVoice 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# Copyright 2023, YOUDAO
# 2024, Du Jing([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from models.prompt_tts_modified.jets import JETSGenerator
from models.prompt_tts_modified.simbert import StyleEncoder
from transformers import AutoTokenizer
import os, sys, torch, argparse
import numpy as np
from models.hifigan.get_vocoder import MAX_WAV_VALUE
import soundfile as sf
from yacs import config as CONFIG
from tqdm import tqdm
from frontend import g2p_cn_en
from frontend_en import ROOT_DIR, read_lexicon, G2p
def get_style_embedding(prompt, tokenizer, style_encoder):
prompt = tokenizer([prompt], return_tensors="pt")
input_ids = prompt["input_ids"]
token_type_ids = prompt["token_type_ids"]
attention_mask = prompt["attention_mask"]
with torch.no_grad():
output = style_encoder(
input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
)
style_embedding = output["pooled_output"].cpu().squeeze().numpy()
return style_embedding
def main(args, config, gpu_id, start_idx, chunk_num):
device = torch.device(
f"cuda:{gpu_id}" if torch.cuda.is_available() else "cpu")
root_path = os.path.join(config.output_directory, args.logdir)
ckpt_path = os.path.join(root_path, "ckpt")
checkpoint_path = os.path.join(ckpt_path, args.checkpoint)
output_dir = args.output_dir
if output_dir is None:
output_dir = os.path.join(root_path, 'audio')
if not os.path.exists(output_dir):
os.makedirs(output_dir)
with open(config.model_config_path, 'r') as fin:
conf = CONFIG.load_cfg(fin)
conf.n_vocab = config.n_symbols
conf.n_speaker = config.speaker_n_labels
style_encoder = StyleEncoder(config)
model_CKPT = torch.load(config.style_encoder_ckpt, map_location=device)
model_ckpt = {}
for key, value in model_CKPT['model'].items():
new_key = key[7:]
model_ckpt[new_key] = value
style_encoder.load_state_dict(model_ckpt, strict=False)
generator = JETSGenerator(conf).to(device)
model_CKPT = torch.load(checkpoint_path, map_location=device)
generator.load_state_dict(model_CKPT['generator'])
generator.eval()
with open(config.token_list_path, 'r') as f:
token2id = {t.strip():idx for idx, t, in enumerate(f.readlines())}
with open(config.speaker2id_path, encoding='utf-8') as f:
id2speaker = {idx:t.strip() for idx, t in enumerate(f.readlines())}
tokenizer = AutoTokenizer.from_pretrained(config.bert_path)
lexicon = read_lexicon(f"{ROOT_DIR}/lexicon/librispeech-lexicon.txt")
g2p = G2p()
prompts = ['Happy', 'Excited', 'Sad', 'Angry'] # prompt is not efficient.
speakers = [i for i in range(conf.n_speaker)]
text_path = args.text_file
with open(text_path, "r") as f:
for i, line in enumerate(tqdm(f)):
if not i in range(start_idx, start_idx+chunk_num):
continue
# iteration on prompts and speakers.
prompt_idx = i % len(prompts)
speaker_idx = i % len(speakers)
prompt = prompts[prompt_idx]
speaker = speakers[speaker_idx]
speaker_name = id2speaker[speaker]
speaker_path = os.path.join(output_dir, speaker_name)
if not os.path.exists(speaker_path):
os.makedirs(speaker_path, exist_ok=True)
utt_name = f"{i+1:06d}"
if os.path.exists(f"{speaker_path}/{utt_name}.wav"):
print(f"audio {speaker_path}/{utt_name}.wav exists, continue.")
continue
try:
content = line.strip()
text = g2p_cn_en(content, g2p, lexicon)
text = text.split()
style_embedding = get_style_embedding(
prompt, tokenizer, style_encoder)
content_embedding = get_style_embedding(
content, tokenizer, style_encoder)
text_int = [token2id[ph] for ph in text]
sequence = torch.from_numpy(
np.array(text_int)).to(device).long().unsqueeze(0)
sequence_len = torch.from_numpy(
np.array([len(text_int)])).to(device)
style_embedding = torch.from_numpy(
style_embedding).to(device).unsqueeze(0)
content_embedding = torch.from_numpy(
content_embedding).to(device).unsqueeze(0)
speaker = torch.from_numpy(
np.array([speaker])).to(device)
with torch.no_grad():
infer_output = generator(
inputs_ling=sequence,
inputs_style_embedding=style_embedding,
input_lengths=sequence_len,
inputs_content_embedding=content_embedding,
inputs_speaker=speaker,
alpha=1.0
)
audio = infer_output[
"wav_predictions"].squeeze() * MAX_WAV_VALUE
audio = audio.cpu().numpy().astype('int16')
sf.write(file=f"{speaker_path}/{utt_name}.wav",
data=audio, samplerate=config.sampling_rate)
with open(f"{speaker_path}/{utt_name}.txt",
'w', encoding='utf-8') as ftext:
ftext.write(f"{content}\n")
except Exception as e:
print(f"Error: {e}")
continue
if __name__ == '__main__':
p = argparse.ArgumentParser()
p.add_argument('-d', '--logdir', default="prompt_tts_open_source_joint",
type=str, required=False)
p.add_argument("-c", "--config_folder", default="config/joint",
type=str, required=False)
p.add_argument("--checkpoint", type=str, default='g_00140000',
required=False, help='inference specific checkpoint。')
p.add_argument('-t', '--text_file', type=str, required=True,
help='the absolute path of test file。')
p.add_argument('-o', '--output_dir', type=str, required=False,
default=None, help='path to save the generated audios.')
p.add_argument('-g', '--gpu_ids', type=str, required=False, default='0')
p.add_argument('-n', '--num_thread', type=str, required=False, default='1')
args = p.parse_args()
sys.path.append(os.path.dirname(
os.path.abspath("__file__")) + "/" + args.config_folder)
from config import Config
config = Config()
from multiprocessing import Process
gpus = args.gpu_ids
os.environ['CUDA_VISIBLE_DEVICES'] = gpus
gpu_list = gpus.split(',')
gpu_num = len(gpu_list)
# 4GB GPU memory per thread, bottleneck is CPU usage!
thread_per_gpu = int(args.num_thread)
thread_num = gpu_num * thread_per_gpu # threads
torch.set_num_threads(4) # faster
total_len = 0
with open(args.text_file) as fin:
for line in fin:
total_len += 1
print(f"Total texts: {total_len}, Thread nums: {thread_num}")
if total_len >= thread_num:
chunk_size = int(total_len / thread_num)
remains = total_len - chunk_size * thread_num
else:
chunk_size = 1
remains = 0
process_list = []
chunk_begin = 0
for i in range(thread_num):
print(f"process part {i}...")
gpu_id = i % gpu_num
now_chunk_size = chunk_size
if remains > 0:
now_chunk_size = chunk_size + 1
remains = remains - 1
# use parallel processing or sequential processing
p = Process(target=main, args=(
args, config, gpu_id, chunk_begin, now_chunk_size))
# main(args, config, gpu_id, chunk_begin, now_chunk_size)
chunk_begin = chunk_begin + now_chunk_size
p.start()
process_list.append(p)
for i in process_list:
p.join()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。