代码拉取完成,页面将自动刷新
同步操作将从 黑影/goNum 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
// DerivativePoly_test
/*
------------------------------------------------------
作者 : Black Ghost
日期 : 2018-12-25
版本 : 0.0.0
------------------------------------------------------
求单变量多项式n阶导数
理论:
------------------------------------------------------
输入 :
A 按幂次连续增加的系数向量,(Nn+1)x1,Nn为最高幂次
n 求导次数
输出 :
sol 解,(Nn+1-n)x1
err 解出标志:false-未解出或达到边界;
true-全部解出
------------------------------------------------------
*/
package goNum_test
import (
"testing"
"github.com/chfenger/goNum"
)
// DerivativePoly 求单变量多项式n阶导数
func DerivativePoly(A goNum.Matrix, n int) (goNum.Matrix, bool) {
/*
求单变量多项式n阶导数
输入 :
A 按幂次连续增加的系数向量,(Nn+1)x1,Nn为最高幂次
n 求导次数
输出 :
sol 解,(Nn+1-n)x1
err 解出标志:false-未解出或达到边界;
true-全部解出
*/
//判断求导次数与最高幂次关系
Nn := A.Rows - 1
if n > Nn+1 {
panic("Error in goNum.DerivativePoly: Derivative number greater than polynomial's order")
}
//Nn+1 = n
if Nn+1 == n {
return goNum.NewMatrix(1, 1, []float64{0.0}), true
}
sol := goNum.ZeroMatrix(Nn+1, 1)
var lenSol int = Nn + 1
var err bool = false
//赋予soltemp初值
for i := 0; i < Nn+1; i++ {
sol.Data[i] = A.Data[i]
}
//求导计算
for i := 1; i < n+1; i++ {
for j := 1; j < lenSol; j++ {
sol.Data[j-1] = float64(j) * sol.Data[j]
}
lenSol--
}
err = true
return goNum.NewMatrix(lenSol, 1, sol.Data[:lenSol]), err
}
func BenchmarkDerivativePoly(b *testing.B) {
A51 := goNum.NewMatrix(4, 1, []float64{5.0, 3.0, 4.0, 2.0})
for i := 0; i < b.N; i++ {
goNum.DerivativePoly(A51, 2) //{8.0,12.0}
}
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。