1 Star 0 Fork 29

余文斌/2023_pytorch110_classification_42

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
window.py 9.09 KB
一键复制 编辑 原始数据 按行查看 历史
肆十二 提交于 2022-12-06 18:00 . 6
# -*- coding: utf-8 -*-
"""
-------------------------------------------------
Project Name: unet
File Name: ui.py.py
Author: chenming
Create Date: 2022/2/7
Description:
-------------------------------------------------
"""
# -*- coding: utf-8 -*-
# 应该在界面启动的时候就将模型加载出来,设置tmp的目录来放中间的处理结果
import shutil
from PyQt5.QtGui import *
from PyQt5.QtCore import *
from PyQt5.QtWidgets import *
import sys
import cv2
import torch
import os.path as osp
from train import SELFMODEL
import numpy as np
from torch import nn
from torchutils import get_torch_transforms
from PIL import Image
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
# 脑肿瘤切片数据集
# 首先网络结构的部分需要优化一下,然后简化一下,该是什么就是什么,一些简单的结构就不反复赘述了。
# 根据每个花卉写一段特殊的的翻译,然后开始周期性的更新。
class MainWindow(QTabWidget):
# 基本配置不动,然后只动第三个界面
def __init__(self):
# 初始化界面
super().__init__()
self.setWindowTitle('花卉识别系统')
self.resize(1200, 800)
self.setWindowIcon(QIcon("images/UI/lufei.png"))
# 图片读取进程
self.output_size = 480
self.img2predict = ""
self.origin_shape = ()
self.model_path = "../checkpoints/resnet50d_pretrained_224/resnet50d_10epochs_accuracy0.99501_weights.pth" # todo 模型路径
# “雏菊”、“蒲公英”、“玫瑰”、“向日葵”、“郁金香”
self.classes_names = ['雏菊', '蒲公英', '玫瑰', '向日葵', '郁金香'] # todo 类名
self.img_size = 224 # todo 图片大小
self.model_name = "resnet50d" # todo 模型名称
self.num_classes = len(self.classes_names) # todo 类别数目
# 加载网络
model = SELFMODEL(model_name=self.model_name, out_features=self.num_classes, pretrained=False)
weights = torch.load(self.model_path,
map_location=torch.device('cpu'))
model.load_state_dict(weights)
model.eval()
model.to(device)
self.model = model
# 加载数据处理
data_transforms = get_torch_transforms(img_size=self.img_size)
# train_transforms = data_transforms['train']
self.valid_transforms = data_transforms['val']
self.initUI()
'''
***界面初始化***
'''
def initUI(self):
# 图片检测子界面
font_title = QFont('楷体', 16)
font_main = QFont('楷体', 14)
# 图片识别界面, 两个按钮,上传图片和显示结果
img_detection_widget = QWidget()
img_detection_layout = QVBoxLayout()
img_detection_title = QLabel("图片识别功能")
img_detection_title.setFont(font_title)
mid_img_widget = QWidget()
mid_img_layout = QHBoxLayout()
self.left_img = QLabel()
self.right_img = QLabel()
self.left_img.setPixmap(QPixmap("images/UI/up.jpeg"))
self.right_img.setPixmap(QPixmap("images/UI/right.jpeg"))
self.left_img.setAlignment(Qt.AlignCenter)
self.right_img.setAlignment(Qt.AlignCenter)
mid_img_layout.addWidget(self.left_img)
mid_img_layout.addStretch(0)
# mid_img_layout.addWidget(self.right_img)
mid_img_widget.setLayout(mid_img_layout)
up_img_button = QPushButton("上传图片")
det_img_button = QPushButton("识别")
up_img_button.clicked.connect(self.upload_img)
det_img_button.clicked.connect(self.detect_img)
up_img_button.setFont(font_main)
det_img_button.setFont(font_main)
#
self.rrr = QLabel("等待识别")
self.rrr.setFont(font_main)
up_img_button.setStyleSheet("QPushButton{color:white}"
"QPushButton:hover{background-color: rgb(2,110,180);}"
"QPushButton{background-color:rgb(48,124,208)}"
"QPushButton{border:2px}"
"QPushButton{border-radius:5px}"
"QPushButton{padding:5px 5px}"
"QPushButton{margin:5px 5px}")
det_img_button.setStyleSheet("QPushButton{color:white}"
"QPushButton:hover{background-color: rgb(2,110,180);}"
"QPushButton{background-color:rgb(48,124,208)}"
"QPushButton{border:2px}"
"QPushButton{border-radius:5px}"
"QPushButton{padding:5px 5px}"
"QPushButton{margin:5px 5px}")
img_detection_layout.addWidget(img_detection_title, alignment=Qt.AlignCenter)
img_detection_layout.addWidget(mid_img_widget, alignment=Qt.AlignCenter)
img_detection_layout.addWidget(self.rrr)
# img_detection_layout.addWidget(self.c1)
img_detection_layout.addWidget(up_img_button)
img_detection_layout.addWidget(det_img_button)
img_detection_widget.setLayout(img_detection_layout)
# todo 关于界面
'''
*** 关于界面 ***
'''
about_widget = QWidget()
about_layout = QVBoxLayout()
about_title = QLabel('欢迎使用基于Pytorch的人脸识别系统\n\n 提供付费指导:有需要的好兄弟加下面的QQ即可') # todo 修改欢迎词语
about_title.setFont(QFont('楷体', 18))
about_title.setAlignment(Qt.AlignCenter)
about_img = QLabel()
about_img.setPixmap(QPixmap('images/UI/qq.png'))
about_img.setAlignment(Qt.AlignCenter)
# label4.setText("<a href='https://oi.wiki/wiki/学习率的调整'>如何调整学习率</a>")
label_super = QLabel() # todo 更换作者信息
label_super.setText("<a href='https://blog.csdn.net/ECHOSON'>或者你可以在这里找到我-->肆十二</a>")
label_super.setFont(QFont('楷体', 16))
label_super.setOpenExternalLinks(True)
# label_super.setOpenExternalLinks(True)
label_super.setAlignment(Qt.AlignRight)
about_layout.addWidget(about_title)
about_layout.addStretch()
about_layout.addWidget(about_img)
about_layout.addStretch()
about_layout.addWidget(label_super)
about_widget.setLayout(about_layout)
self.left_img.setAlignment(Qt.AlignCenter)
self.addTab(img_detection_widget, '图片检测')
self.addTab(about_widget, '找到我')
self.setTabIcon(0, QIcon('images/UI/lufei.png'))
self.setTabIcon(1, QIcon('images/UI/lufei.png'))
'''
***上传图片***
'''
def upload_img(self):
# 选择录像文件进行读取
fileName, fileType = QFileDialog.getOpenFileName(self, 'Choose file', '', '*.jpg *.png *.tif *.jpeg')
if fileName:
suffix = fileName.split(".")[-1]
save_path = osp.join("images/tmp", "tmp_upload." + suffix)
shutil.copy(fileName, save_path)
# 应该调整一下图片的大小,然后统一防在一起
im0 = cv2.imread(save_path)
resize_scale = self.output_size / im0.shape[0]
im0 = cv2.resize(im0, (0, 0), fx=resize_scale, fy=resize_scale)
cv2.imwrite("images/tmp/upload_show_result.jpg", im0)
# self.right_img.setPixmap(QPixmap("images/tmp/single_result.jpg"))
self.img2predict = fileName
self.origin_shape = (im0.shape[1], im0.shape[0])
self.left_img.setPixmap(QPixmap("images/tmp/upload_show_result.jpg"))
# todo 上传图片之后右侧的图片重置,
self.right_img.setPixmap(QPixmap("images/UI/right.jpeg"))
self.rrr.setText("等待识别")
'''
***检测图片***
'''
# 写一个通用的内容,在主界面上,包含一些对花卉的介绍。
def detect_img(self):
# model = self.model
# output_size = self.output_size
source = self.img2predict # file/dir/URL/glob, 0 for webcam
img = Image.open(source)
img = self.valid_transforms(img)
img = img.unsqueeze(0)
img = img.to(device)
output = self.model(img)
label_id = torch.argmax(output).item()
predict_name = self.classes_names[label_id]
self.rrr.setText("当前识别结果为:{}".format(predict_name))
# 关闭事件 询问用户是否退出
def closeEvent(self, event):
reply = QMessageBox.question(self,
'退出',
"是否要退出程序?",
QMessageBox.Yes | QMessageBox.No,
QMessageBox.No)
if reply == QMessageBox.Yes:
self.close()
event.accept()
else:
event.ignore()
if __name__ == "__main__":
app = QApplication(sys.argv)
mainWindow = MainWindow()
mainWindow.show()
sys.exit(app.exec_())
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/Yu_Wenbin/2023_pytorch110_classification_42.git
[email protected]:Yu_Wenbin/2023_pytorch110_classification_42.git
Yu_Wenbin
2023_pytorch110_classification_42
2023_pytorch110_classification_42
master

搜索帮助