代码拉取完成,页面将自动刷新
<TeXmacs|2.1.2>
<style|<tuple|course|british|smart-ref|preview-ref|doc>>
<\body>
<\exercise>
Below is a sequence of expressions. What is the result printed by the
interpreter in response to each expression? Assume that the sequence is
to be evaluated in the order in which it is presented.
<\session|scheme|default>
<\folded-io|Scheme] >
10
<|folded-io>
10
</folded-io>
<\folded-io|Scheme] >
(+ 5 3 4)
<|folded-io>
12
</folded-io>
<\folded-io|Scheme] >
(- 9 1)
<|folded-io>
8
</folded-io>
<\folded-io|Scheme] >
(/ 6 2)
<|folded-io>
3
</folded-io>
<\folded-io|Scheme] >
(+ (* 2 4) (- 4 6))
<|folded-io>
6
</folded-io>
<\input|Scheme] >
(define a 3)
</input>
<\input|Scheme] >
(define b (+ a 1))
</input>
<\folded-io|Scheme] >
(+ a b (* a b))
<|folded-io>
19
</folded-io>
<\folded-io|Scheme] >
(= a b)
<|folded-io>
#f
</folded-io>
<\folded-io|Scheme] >
(if (and (\<gtr\> b a) (\<less\> b (* a b)))
\ \ \ \ b
\ \ \ \ a)
<|folded-io>
4
</folded-io>
<\folded-io|Scheme] >
(cond ((= a 4) 6)
\ \ \ \ \ \ ((= b 4) (+ 6 7 a))
\ \ \ \ \ \ (else 25))
<|folded-io>
16
</folded-io>
<\folded-io|Scheme] >
(+ 2 (if (\<gtr\> b a) b a))
<|folded-io>
6
</folded-io>
<\folded-io|Scheme] >
(* (cond ((\<gtr\> a b) a)
\ \ \ \ \ \ \ \ \ ((\<less\> a b) b)
\ \ \ \ \ \ \ \ \ (else -1)))
<|folded-io>
4
</folded-io>
<\input|Scheme] >
\;
</input>
</session>
</exercise>
<\exercise>
Translate the following expression into prefix form:
<math|<frac|5+4+<around*|(|2-<around*|(|3-<around*|(|6+<frac|4|5>|)>|)>|)>|3<around*|(|6-2|)><around*|(|2-7|)>>>.
</exercise>
<\folded>
<\exercise>
Define a procedure that takes three numbers as arguments and returns
the sum of the squares of the two larger numbers.
</exercise>
<|folded>
<\solution*>
\;
<\session|scheme|default>
<\unfolded-io|Scheme] >
(define (ex3 a b c)
\ \ (cond ((\<less\> a c) (ex3 c b a))
\ \ \ \ \ \ \ \ ((\<less\> b c) (ex3 a c b))
\ \ \ \ \ \ \ \ (else (+ (* a a) (* b b)))))
<|unfolded-io>
ex3
</unfolded-io>
<\unfolded-io|Scheme] >
(ex3 1 2 3)
<|unfolded-io>
13
</unfolded-io>
<\unfolded-io|Scheme] >
(ex3 1 3 2)
<|unfolded-io>
13
</unfolded-io>
<\unfolded-io|Scheme] >
(ex3 2 1 3)
<|unfolded-io>
13
</unfolded-io>
<\unfolded-io|Scheme] >
(ex3 2 3 1)
<|unfolded-io>
13
</unfolded-io>
<\unfolded-io|Scheme] >
(ex3 3 1 2)
<|unfolded-io>
13
</unfolded-io>
<\unfolded-io|Scheme] >
(ex3 3 2 1)
<|unfolded-io>
13
</unfolded-io>
<\input|Scheme] >
\;
</input>
</session>
</solution*>
</folded>
<\folded>
<\exercise>
\ Observe that our model of evaluation allows for combinations whose
operators are compound expressions. Use this observation to describe
the behavior of the following procedure:
<\scm-code>
(define (a-plus-abs-b a b)
\ \ ((if (\<gtr\> b 0) + -) a b))
</scm-code>
</exercise>
<|folded>
<\solution*>
\;
<\scm-code>
(a-plus-abs-b 3 4)
((if (\<gtr\> 4 0) + -) 3 4)
(+ 3 4)
7
\;
(a-plus-abs-b 3 -4)
((if (\<gtr\> -4 0) + -) 3 -4)
(- 3 -4)
7
</scm-code>
</solution*>
</folded>
<\folded>
<\exercise>
<label|ex1.5>Ben Bitdiddle has invented a test to determine whether the
interpreter he is faced with is using applicative-order evaluation or
normal-order evaluation. He defines the following two procedures:
<\scm-code>
(define (p) (p))
\;
(define (test x y)
\ \ (if (= x 0)
\ \ \ \ \ \ 0
\ \ \ \ \ \ y))
</scm-code>
Then he evaluates the expression
<\scm-code>
(test 0 (p))
</scm-code>
What behavior will Ben observe with an interpreter that uses
applicative-order evaluation? What behavior will he observe with an
interpreter that uses normal-order evaluation? Explain your answer.
(Assume that the evaluation rule for the special form <code*|if> is the
same whether the interpreter is using normal or applicative order: The
predicate expression is evaluated first, and the result determines
whether to evaluate the consequent or the alternative expression.)
</exercise>
<|folded>
<\solution*>
\;
<\description>
<item*|normal order evaluation>
<\scm-code>
(test 0 (p))
(if (= 0 0) 0 (p))
0
</scm-code>
<item*|applicative order evaluation>
<\scm-code>
(test 0 (p))
(test 0 (p))
(test 0 (p))
</scm-code>
</description>
</solution*>
</folded>
<\folded>
<\exercise>
Alyssa P. Hacker doesn't see why <code*|if> needs to be provided as a
special form. \PWhy can't I just define it as an ordinary procedure in
terms of <code*|cond>?\Q she asks. Alyssa's friend Eva Lu Ator claims
this can indeed be done, and she defines a new version of <code*|if>:
<\scm-code>
(define (new-if predicate then-clause else-clause)
\ \ (cond (predicate then-clause)
\ \ \ \ \ \ \ \ (else else-clause)))
</scm-code>
Eva demonstrates the program for Alyssa:
<\scm-code>
(new-if (= 2 3) 0 5)
<with|font-shape|italic|5>
\;
(new-if (= 1 1) 0 5)
<with|font-shape|italic|0>
</scm-code>
Delighted, Alyssa uses <code*|new-if> to rewrite the square-root
program:
<\scm-code>
(define (sqrt-iter guess x)
\ \ (new-if (good-enough? guess x)
\ \ \ \ \ \ \ \ \ \ guess
\ \ \ \ \ \ \ \ \ \ (sqrt-iter (improve guess x)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x)))
</scm-code>
What happens when Alyssa attempts to use this to compute square roots?
Explain.
</exercise>
<|folded>
<\session|scheme|default>
<\unfolded-io|Scheme] >
(define (square x) (* x x))
<|unfolded-io>
square
</unfolded-io>
<\unfolded-io|Scheme] >
(define (sqrt-iter guess x)
\ \ (if (good-enough? guess x)
\ \ \ \ \ \ guess
\ \ \ \ \ \ (sqrt-iter (improve guess x)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x)))
<|unfolded-io>
sqrt-iter
</unfolded-io>
<\unfolded-io|Scheme] >
(define (improve guess x)
\ \ (average guess (/ x guess)))
<|unfolded-io>
improve
</unfolded-io>
<\unfolded-io|Scheme] >
(define (average x y)
\ \ (/ (+ x y) 2))
<|unfolded-io>
average
</unfolded-io>
<\unfolded-io|Scheme] >
(define (good-enough? guess x)
\ \ (\<less\> (abs (- (<hlink|square|#define_square> guess) x))
0.001))
<|unfolded-io>
good-enough?
</unfolded-io>
<\unfolded-io|Scheme] >
(define (sqrt x)
\ \ (sqrt-iter 1.0 x))
<|unfolded-io>
sqrt
</unfolded-io>
<\unfolded-io|Scheme] >
(sqrt 2)
<|unfolded-io>
1.4142156862745097
</unfolded-io>
\;
Attempt to use <scm|new-if>:
<\input|Scheme] >
(define (new-if predicate then-clause else-clause)
\ \ (cond (predicate then-clause)
\ \ \ \ \ \ \ \ (else else-clause)))
</input>
<\input|Scheme] >
(define (sqrt-iter guess x)
\ \ (new-if (good-enough? guess x)
\ \ \ \ \ \ guess
\ \ \ \ \ \ (sqrt-iter (improve guess x)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x)))
</input>
</session>
</folded>
<\folded>
<\exercise>
<label|ex1.7>The <code*|good-enough?> test used in computing square
roots will not be very effective for finding the square roots of very
small numbers. Also, in real computers, arithmetic operations are
almost always performed with limited precision. This makes our test
inadequate for very large numbers. Explain these statements, with
examples showing how the test fails for small and large numbers. An
alternative strategy for implementing <code*|good-enough?> is to watch
how <code*|guess> changes from one iteration to the next and to stop
when the change is a very small fraction of the guess. Design a
square-root procedure that uses this kind of end test. Does this work
better for small and large numbers?
</exercise>
<|folded>
We can use <scm|debug-message> to print messages in
<menu|Debug|Console|Debugging Console>.
<\session|scheme|default>
<\input>
Scheme]\
<|input>
(debug-message "std" "hello\\n")
</input>
</session>
<\session|scheme|default>
<\unfolded-io|Scheme] >
(define (square x) (* x x))
<|unfolded-io>
square
</unfolded-io>
<\unfolded-io|Scheme] >
(define (sqrt-iter guess x)
\ \ (if (good-enough? guess x)
\ \ \ \ \ \ guess
\ \ \ \ \ \ (sqrt-iter (improve guess x)
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x)))
<|unfolded-io>
sqrt-iter
</unfolded-io>
<\unfolded-io|Scheme] >
(define (improve guess x)
\ \ (average guess (/ x guess)))
<|unfolded-io>
improve
</unfolded-io>
<\unfolded-io|Scheme] >
(define (average x y)
\ \ (/ (+ x y) 2))
<|unfolded-io>
average
</unfolded-io>
<\unfolded-io|Scheme] >
(define (good-enough? guess x)
\ \ (debug-message "std" (string-append "guess: "
(number-\<gtr\>string guess) "\\n"))
\ \ (\<less\> (abs (- (<hlink|square|#define_square> guess) x))
0.001))
<|unfolded-io>
good-enough?
</unfolded-io>
<\unfolded-io|Scheme] >
(define (sqrt x)
\ \ (sqrt-iter 1.0 x))
<|unfolded-io>
sqrt
</unfolded-io>
<\unfolded-io|Scheme] >
(sqrt 0.000000001)
<|unfolded-io>
0.03125001065624928
</unfolded-io>
<\unfolded-io|Scheme] >
(sqrt 1000)
<|unfolded-io>
31.622782450701045
</unfolded-io>
<\input|Scheme] >
\;
</input>
</session>
</folded>
<\exercise>
Newton's method for cube roots is based on the fact that if <math|y> is
an approximation to the cube root of <math|x>, then a better
approximation is given by the value <math|<frac|x<around*|/|y<rsup|2>+2*y|\<nobracket\>>|3>>.
Use this formula to implement a cube-root procedure analogous to the
square-root procedure. (In Section 1.3.4 we will see how to implement
Newton's method in general as an abstraction of these square-root and
cube-root procedures.)
</exercise>
</body>
<\initial>
<\collection>
<associate|page-medium|papyrus>
<associate|page-screen-margin|false>
</collection>
</initial>
<\references>
<\collection>
<associate|auto-1|<tuple|7|?>>
<associate|ex1.5|<tuple|5|1>>
<associate|ex1.7|<tuple|7|2>>
</collection>
</references>
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。